The Use of Text Retrieval and
Natural Language Processing in
Software Engineering

Tutorial @ SaTToSE 2016

Dr. Venera Arnaoudova

&£

WASHINGTON STATE Assistant Professor
[UNIVERSITY



The Use of Text Retrieval and
Natural Language Processing in
Software Engineering

Sonia Haiduc

Venera Arnaoudova

WASHINGTON STATE
[UNIVERSITY

Andrian Marcus

Giuliano Antoniol




Outline

Introduction
Background on IR and NLP
SE tasks using IR and NLP

— Task definition
— Input

— Qutput

— Preprocessing
— Techniques

— Evaluation

— Tools used

Hands-on



Textual Information in Software

* Captures concepts of the problem domain, developer
intentions, developer communication, etc.

 Found in many software artifacts:

— Requirements

— Design documents

— Source code (identifiers, comments)

— Commit notes

— Documentation

— User manuals

— Q/A websites

— Developer communication: emails, chat, tweets
— Etc.



Text Retrieval

* Information Retrieval (IR): the process of actively
seeking out information relevant to a topic of interest

(van Rijsbergen)

* Text Retrieval (TR): a branch of IR where the
information is stored in text format

— Search space: collection of documents (corpus)

— Document - generic term for an information unit
* book, chapter, article, webpage, etc.
e class, method, interface, etc.

* individual requirement, bug description, test case, e-mail, design
diagram, etc.



Natural Language Processing

* Refers to the use and ability of systems to
process sentences in a natural language such
as English (rather than in a specialized,
artificial computer language such as C++)

* Combines techniques from computer science,
artificial intelligence, computational
linguistics, probability and statistics



o o O O O O O O O O O

TR and NLP in Software Engineering

Applied to over 30 different SE tasks

Traceability Link Recovery Requirements analysis
Feature/concept/concern/bug location Restructuring/refactoring
Code reuse Software categorization
Bug triage Licensing analysis

Program comprehension Impact analysis

Architecture/design recovery Clone detection

Quality assessment and measurement Effort prediction/estimation

Software evolution analysis Domain analysis

Web services discovery

O
O
O
O
O
O
®
O
Defect prediction and debugging O
O

Automatic documentation Use case analysis

Testing o Team management, etc.



Publications per year

LN
L
)
oN

30

/0

60

50

40

30

r10¢
e10c¢
¢10¢
110¢
010¢
600¢
800¢
£00¢
900¢
S00¢
700¢
€00¢
¢00¢
100¢
000¢
6661
L661
661
1661
6361
3861
L3861



Outline

 Background on IR and NLP
e SE tasks using IR and NLP

— Task definition
— Input

— Qutput

— Preprocessing
— Techniques

— Evaluation

— Tools used

e Hands-on



0 N O ”n

A Typical TR Application

Build corpus
Index corpus — choose the TR model

Formulate a query
e Manual or automatic

Compute similarities between the query and
the documents in the corpus (i.e., relevance)

Rank the documents based on the similarities
Return the top N documents as the result list
Inspect the results

GO TO 3. if needed or STOP



Creating a Corpus of a
Software System

Parsing software artifacts and extracting documents
— corpus — collection of documents (e.g., methods)

Text normalization (white space and non-textual
tokens removal, tokenization)

Splitting: split_identifiers, Splitldentifiers, etc.
Stop words removal

— common words in English, programming language
keywords, project-specific words, etc.

Abbreviation and acronym expansion
Stemming



Extracting Documents

* Documents can be at different
methods, classes, files, emails,

granularities (e.g.,
bug descriptions, etc.)

public void run{IProgressMonitor monitor)
throws InvocationTargetException,
InterruptedException{

if ( w_iFlag == 0 )
processCorpus (monitor, checkUpdate())

else if ( m iFlag == 2 )
processCorpus (monitor, UD UPDATECORPUS) ;

else
processQuery3tring (monitor) ;

if (monitor.isCanceled())
throw new InterruptedException("The long running

public void run(IProgressMonitor monitor)
throws InvocationTargetException,
InterruptedException{

if ( w_iFlag == 0 )
processCorpus (monitor, checkUpdate () )

else if ( m iFlag == 2 )
processCorpus (monitor, UD UPDATECORPUS) ;

else
processQuery3tring (monitor) ;

if (monitor.isCanceled())
throw new InterruptedException("The long running

public void run(IProgressMonitor monitor)
throws InvocationTargetException,
InterruptedException{
if ( m_iFlag == 0 )
processCorpus (monitor,checkUpdate() )
else if ( m_iFlag == 2 )
processCorpus (monitor, UD UPDATECORPUS) ;
else
processQuery3tring (monitor) ;

if (monitor.isCanceled())
throw new InterruptedException("The long running

public void run(IProgressMonitor monitor)
throws InvocationTargetException,
InterruptedException{

if ( m_iFlag == 0
processCorpus (monitor, checkUpdate () ) ;

else if (| m iFlag == 2 )
processCorpus (monitor, UD UPDATECORPUS) ;

else
processQuery3tring (monitor) ;

if (monitor.isCanceled())
throw new InterruptedException("The long running

public void runi(IProgressMonitor monitor)
throws InvocationTargetException,
InterruptedException{

if ( m_iFlag == 0
processCorpus (monitor, checkUpdate () )

else if { m_iFlag == 2 )
processCorpus (monitor, UD UPDATECORPUS) ;

else
processQuery3tring (monitor) ;

if (monitor.isCanceled())
throw new InterruptedException("The long running

public void runi(IProgressMonitor monitor)
throws InvocationTargetException,
InterruptedException{

if ( w_iFlag == 0 )
processCorpus (monitor, checkUpdate() )

else if ( m_iFlag == 2 )
processCorpus (monitor, UD UPDATECORPUS) ;

else
processQuery3tring (monitor) ;

if (monitor.isCanceled())
throw new InterruptedException("The long running

bublic void run(IProgressMonitor monitor)
throws InvocationTargetException,
InterruptedException{

if { m_iFlag == 0 )
processCorpus (monitor, checkUpdate () )

else if ( m iFlag == 2 )
processCorpus (monitor, U0 UPDATECORPUS) ;

else
processQuery3tring (monitor) ;

if (monitor.isCanceled())
throw new InterruptedException("The long running

public void run(IProgressMonitor monitor)
throws InvocationTargetException,
InterruptedExceptiond{

if { w_iFlag == 0 )
processCorpus (monitor, checkUpdate())

else if ( mw_iFlag == 2 )
processCorpus (monitor, VD UPDATECORPUS) ;

else
processQuery3tring (monitor) ;

if (monitor.isCanceled())
throw new InterruptedException("The long running

public void runiIProgressMonitor monitor)
throws InvocationTargetException,
InterruptedException{

if ( w_iFlag == 0 )
processCorpus (monitor, checkUpdate() )

else if ( m iFlag ==
processCorpus (monitor, UD UPDATECORPUS) ;

else
processQuery3tring (monitor) ;

if (monitor.isCanceled())
throw new InterruptedException("The long running




Extracting Documents

* Documents can be at different
methods, classes, files, emails,

granularities (e.g.,
bug descriptions,

etc.)

monitor monitor)
throws InvocationTargetException,
InterruptedException{
if ( m_iFlag == 0
processCorpus (monitor, checkUpdate() )
else if (| m iFlag == 2 )
processCorpus (monitor, U0 UPDATECORPUS) ;
else
processQuery3tring (monitor) ;

if (monitor.isCanceled())

e —— - —— - — T ———————
public void run(IProgressMonitor monitor)

throws InvocationTargetException,
InterruptedException{
if ( w_iFlag == 0 )
processCorpus (monitor, checkUpdate())
else if | m iFlag == |
processCorpus (monitor, UD UPDATECORPUS) ;
else
processQuery3tring (monitor) ;

if (monitor.isCanceled())

P
public void runilIProgressMonitor monitor)

if

throws InvocationTargetException,
InterruptedException{

{ m_iFlag == 0 )

processCorpus (monitor, checkUpdate () )

else if ( m _iFlag == 2 )

processCorpus (monitor, YD UPDATECORPUS) ;

else

processQuery3tring (monitor) ;

if (monitor.isCanceled())
throw new InterruptedException("The long running throw new InterruptedException("The long running throw new InterruptedException("The long running
1 i ¥
— e —— - ——— i — T —————————
public void run(IProgressMonitor monitor) public void run(IProgressMonitor monitor)
ublic void runi(IProgressMonitor monitor)

throws InvocationTargetException,
InterruptedException{
if ( w_iFlag == 0 )
processCorpus (monitor, checkUpdate())
else if ( m_iFlag == 2 )
processCorpus (monitor, UD UPDATECORPUS) ;
else
processQuery3tring (monitor) ;

if (monitor.isCanceled())
throw new InterruptedException("The long running

throws InvocationTargetException,
InterruptedException{
if ( w_iFlag == 0 )
processCorpus (monitor, checkUpdate () )
else if ( m iFlag ==
processCorpus (monitor, UD UPDATECORPUS) ;
else
processQuery3tring (monitor) ;

if (monitor.isCanceled())
throw new InterruptedException("The long running

public void run(IProgrﬁonitor monitor)
throws InvocationTargetException,
InterruptedException{

if ( w_iFlag == 0 )
processCorpus (monitor, checkUpdate() ) ;

else if ( m iFlag == 2 )
processCorpus (monitor, VD UPDATECORPUS) ;

else
processQuery3tring (monitor) ;

if (monitor.isCanceled())
throw new InterruptedException("The long running

public void run(IPrcwgrﬁonitor monitor)
throws InvocationTargetException,
InterruptedException{
if ( m_iFlag == 0 )
processCorpus (monitor,checkUpdate() )
else if ( m_iFlag == 2 )
processCorpus (monitor, UD UPDATECORPUS) ;
else
processQuery3tring (monitor) ;

if (monitor.isCanceled())
throw new InterruptedException("The long running

}

if |

else

else

throws InvocationTargetException,
InterruptedException{

m_iFlag == 0 )

processCorpus (monitor, checkUpdate () ) ;

if { m_iFlag == 2 )

processCorpus (monitor, VD UPDATECORPUS) ;

processQuery3tring (monitor) ;

if (monitor.isCanceled())

TR - iliiiiili"]iiiii" P FRTL N 2

e
public void runiIProgressMonitor monitor)

if

throws InvocationTargetException,
InterruptedException{

{ w_iFlag == 0 )

processCorpus (monitor,checkUpdate() )

else if ( m_iFlag == 2 )

processCorpus (monitor, UD UPDATECORPUS) ;

else

if

processQueryString (monitor) ;

(ronitor.isCanceled())
throw new InterruptedException("The long running




Transform Source Code to Plain Text

public void run(IProgressMonitor monitor)
throws InvocationTargetException,
InterruptedExceptiond
if ( m iFlag == 0 )
processCorpus (monitor,checkUpdate() ) ;
else if ( m iFlag == 2 )
processCorpus (monitor, D UPDATECORPUS) ;
else
processQueryitring (monitor) ;

if (monitor.isCanceled())
throw new InterruptedException("The long running

public void run IProgressMonitor monitor throws
InvocationTargetException InterruptedException 1f m 1Flag
processCorpus monitor checkUpdate else if m_1Flag
processCorpus monitor UD UPDATECORPUS celse
processQueryString monitor 1f monitor isCancelled throw
new InterruptedException the long running



Text Normalization

* Break up the text in “tokens”

* Problem cases

— Numbers: “M16”, “2001”

— Hyphenation: “MS-DOS”, “OS/2”

— Punctuation: “John’s”, “command.com”
— Case: “us”, “US”

— Phrases: “venetian blind”



Splitting

* Splitting: decomposing identifiers into their
compound words

* |dentifiers may use division markers (e.g.,
camelCase and )

* Examples:
— getName -> ‘get’, ‘Name’
— getMAXstring-> ‘get’, ‘MAX/ ‘string’
— ASTNode -> ‘AST’, ‘Node’
— account number ->‘account’, ‘number’

— simpletypename-> ‘simple’, ‘type’, ‘name’



Stop Words

* Very frequent words, with no power of
discrimination (e.g., language keywords)

* Typically function words, not indicative of
content

* The stop words set depends on the document
collection and on the application (e.g.,
language keywords)



Abbreviation and
Acronym Expansion

* Expand abbreviations and acronyms to the
corresponding full words

* Examples:
— mess -> ‘message’
— src -> ‘source’
— regex -> ‘regular expression’
— ASCII -> ‘American Standard Code for Information Interchange’

— auth -> ‘authenticate’ OR ‘author’



Stemming

* |dentify morphological variants, creating “classes”
— system, systems
— forget, forgetting, forgetful
— analyse, analysis, analytical, analysing

* Replace each term by the class representative
(root or most common variant)



Most Popular TR Models Used in SE

Vector Space Model (VSM)

Latent Semantic Indexing (LSI)

Latent Dirichlet Allocation (LDA)

Etc.



The Vector-Space Model

Assume t distinct terms remain after preprocessing
— call them index terms or the vocabulary

These “orthogonal” terms form a vector space.
— Dimension =t = |vocabulary|

Each term, i, in a document or query, j, is given a real-
valued weight, w;;
Both documents and queries are expressed as
t-dimensional vectors (most vectors are sparse):

d = (wgy wy, ..., W)
Each vector holds a place for every term in the
collection



Query and Document Vectors

tr,

.15
D] = 2T1+ 3T2 + 5T3’/,",

Q =01, + 01, + 21,




Document-Term Matrix

* A collection of n documents can be represented in the
VSM by a document-term matrix.

* An entry in the matrix corresponds to the “weight” of a
term in the document

—zero means the term has no significance in the document or it
simply doesn’t exist in the document.

\1‘11 11'21 \1'{1
[y Wy Wy, Wi

) , ,
L/, \11” 4!

n W th |



Term Weights — Local Weights

* The weight of a term in the document-term matrix w;,is
a combination of a local weight (/) and a global weight
(i) Wi =11 ™ gk

* Local weights (/) used to indicate the importance of a
term relative to a particular document:

— term frequency (tf,): number of times term i appears in doc k

(the more a term appears in a doc, the more relevantit is to
that doc)

— log-term frequency (log tf,): mitigates the effect of tf -
relevance does not always increase proportionally with term
frequency

— binary (b, ): 1if term i appears in doc k, O otherwise



Term Weights — Global Weights

* Global weight (g;) is used to indicate the importance
of a term relative to the entire document collection.
Used as an indication of a term’s discrimination
POWeET.

— document frequency (df ;): number of documents
containing term i; rare terms are more informative than
frequent terms; df; is an inverse measure of the
informativeness of t

— inverse document frequency (idf)): idf, = log, (N/df,) - N:
total number of documents; log is used to “dampen” the
effect; IDF provides high values for rare words and low
values for common words



Query-Document Similarity

* A vector similarity measure between the query and
documents is used to rank retrieved documents

Cosine similarity Y
\/ 2 2
i ne

ldentical meaning: value of cosine =1
Unrelated meaning: value of cosine =0




Two Problems with VSM

VSM uses exact word matching

— |If the exact terms from a query are not found in a relevant
document, the document will not be retrieved

The same concept can be expressed using different sets
of terms (synonyms)

— e.g. bandit, brigand, thief

ldentical terms can be used in very different semantic
contexts (homonyms)

— e.g. bank

* repository where important material is saved
* theslope beside a body of water



Latent Semantic Indexing

* Uses linear algebra technique called Singular Value
Decomposition (SVD) to simulate human learning of

word and passage meaning
— attempts to estimate the hidden structure

— discovers the most important associative patterns
between words and concepts

— reduces the document-term matrix to a smaller
dimension

* Its success depends on choosing the right number of
dimensions to extract



Evaluating TR Systems

not retrieved &
irrelevant

not retrieved but
relevant

not retrieved

E
E retrieved &
Entire Relevant Retrieved Qi::) irrelevant
document BRSLEMEHERSdocuments an
collection =
S retrieved &
) relevant
2
retrieved
7 Number of relevant documents retrieved
recall =
Total number of relevant documents
. Number of relevant documents retrieved
precision =

Total number of documents retrieved




Trade-off Between Recall and Precision

Returns relevant documents but
misses many useful ones too The ideal

S

Precision@
A\

-
@\
Recall Returns most relevant

documents but includes
lots of junk



Computing Recall/Precision Points

 For agiven query, produce the ranked list of documents.

* Any threshold on this ranked list produces different sets of

retrieved documents.
Top

. threshold

e Mark each document in the ranked list that is relevant
according to the gold standard.

 Compute a recall/precision pair for each position in the ranked
list that contains a relevant document.



Ranked List Threshold(s)

* Fixed one --take the first 10 results

* Variable such as score threshold: keep element with
score in the top 5%

* Gap threshold:
— traverse the ranked list (from highest to lowest score)
— find the widest gap between adjacent scores

— the score immediately prior to the gap becomes the
threshold



F-Measure

* The traditional F-measure or balanced F-score (F1
score) is the harmonic mean of precision and recall

precision - recall

F=2

precision + recall



Precision and Recall: the Holy Grail

* Precision and recall do not tell the entire story

Top Top

Good
results

Good

‘ <:J results

k=1(P(k) x rel(k))

e Average precision: AveP =
number of relevant documents




Query Formulation

e Usually simple bag of words
— Ex. “tutorial software engineering text retrieval”

* Natural language sentences or paragraphs

— Ex. “When is scheduled the tutorial on Text
Retrieval Approaches in Software Engineering ?”

* Existing documents



Query Analysis and Expansion

* Spellchecking -> change words
 Compare with vocabulary -> remove words

* Use thesaurus -> suggest alternative words
(synonyms — from dictionary, source code, etc.)



Query Modification

* Problem: How can we reformulate the query
to help a user?
— Thesaurus expansion:
* Suggest terms similar to query terms
— Relevance feedback:

* Suggest terms (and documents) similar to
retrieved documents that have been judged to
be relevant

— More advanced: automatic based on query
properties, mining terms from source code, etc.



Using TR in SE — Option 1

* Formulate the SE problem as a text retrieval
problem

e Convert the software artifacts into a text
corpus

e Choose the TR model best suited to the
problem



SE as TR

Concept/concern/feature location in software
Traceability link recovery between software artifacts
Impact analysis

Software reuse

Bug triage

Requirements analysis

Etc.



Using TR in SE — Option 2

Analysis of the textual information in software

Convert the software artifacts into a text
COrpus

Choose the TR model best suited to the
problem

Compute similarities between documents

Perform analysis based on these measures



SE as Text Analysis

Software categorization
Refactoring and restructuring
Reverse engineering

Bug triage

Clone detection
Requirements analysis
Defect prediction

Change impact analysis

Etc.



Advantages of Using TR

No predefined grammar and vocabulary

Some techniques able to infer word relationships
without a thesaurus or an ontology

Goes beyond exact string matching

Offers a ranked list of results



Limitations of Using IR

* Many TR models are not intuitive for humans
-> hard to understand the results of TR

 Parameter Configuration

* |gnores document and sentence structure,
and relationships between consequent words

are ignored (“bag of words”)



Outline

* Background on NLP
e SE tasks using IR and NLP

— Task definition
— Input

— Qutput

— Preprocessing
— Techniques

— Evaluation

— Tools used

e Hands-on



Sequences of words
Text is not only a bag of words...

e The order of words matter!

{‘a’, ‘chasing’, ‘cat’, ’ fish’, ’is’, 'the’}

“a cat is chasing the fish” # “a fish is chasing the cat”



NLP Techniques

* Language Models (LM)



Language Models (LM)

* Assign probabilities for sequences of words
P(happy|“l am”)?

uni-gram: ~ P(happy)

.... ha
bi-gram: ~ P(happy|am) PPY
... am ha
tri-gram: ~ P(happy |l am) PPY
... lam happy

n-gram



Language Models (LM)

* |n general:

P(W:,W2,W;,...,W:) =
P(w:)P(wW: | Wi)P(Ws | w1, W2)...P(Wa| Ws,...,Wni)

P(wlwzws...wn)=H(wi | WiW2Ws.. W)

P(l am smiling) =

P(l)xP(am|1) X P(smiling |1 am)



Data sparsity

* Corpus:
* ‘I am smiling”
* “You are happy”
* “We are happy”

 P(happy|l am) if we use a tri-gram language model?



Grammar
Text is not only a bag of words...

e The order of words matter!

{‘a’, ‘chasing’, ‘cat’, ’ fish’, ’is’, 'the’}

“acatlis chasing thelfish! # “afishlis chasing the [cat]

Noun Noun Noun Noun

Subject Object Subject Object



NLP Techniques

* Syntactic analysis



Tagging words and phrases

* Tagging words with their

respective Part-Of-
Speech (POS)

e Chunking

VB

",

get full name

J]

NN

B -

VB: verb
JJ: adjective
NN: noun

NP: noun phrase
VP: verb phrase



Syntactic Analysis

* |dentifying grammatical relations between words

dobj
A—amodt
VB NN amod: adjectival modifier

7 —A

get full Earr 5 dobj: direct object




Stanford NLP Software

e Stanford CoreNLP

— Stanford Tokenizer
— Stanford POS Tagger

— Stanford Parser



Stanford POS Tagger

“When are we going to hear about applications of
NLP in Software Engineering?”

WRB| (VBP][PRP] (VBG] [TO] (VB] [IN; NNS

g, K_Mf_JH—H N —

When are we going to hear about appllcatlons

IN] [NNJ [IN]| (NNP NNP
of NLP in |Software Engineering

WRB Wh-adverb N N N N

I e
VBP  Verb, non-3rd person singular present -~ N~ ™
e pronon software engineerin
VBG Verb, gerund or present participle g g
VB Verb, base form
IN Preposition or subordinating conjunction

NNP  Proper noun, singular



POS Taggers challenge

e What is the POS of the word back?

— Adjective (JJ): “The back door.”

— Noun (NN): “On my back.”

— Adverb (RB): “Win the voters back.”

— Verb (VB): “Promised to back the bill.”




What do POS Taggers rely on?

— Neighbouring words

> Verb, non-3rd person

I@l badminton singular present (VBP)

— Word probabilities in general

Imarn

noun (pl. men )

1 an adult human male. > More often used (NN)

verb (mans, manning, manned) [ with obj. ]

1 (of personnel) work at, run



Parse trees

* “Bell, based in Los Angeles, makes and distributes
electronic, computer and building products.”

(ROOT
(S
(NP
(NP (NNP Bell))
(r 1)
(VP (VBN based)
(PP (IN in)
(NP (NNP Los) (NNP Angeles))))
(r 1))
(VP (VBZ makes)
(CC and)
(VBZ distributes)
(NP
(UCP (JJ electronic) (, ,) (NN computer)
(CC and)
(NN building))
(NNS products)))

(« +)))



Probabilistic Context-Free
Grammar (PCFG) Parsers

Rule

N

cream

P(t) = 0.8 x0.3 x0.2 x1.0 x0.23
= 0.00384

SRS R R

AN AR AR A R

PP

NP VP

S conj S
Noun

Det Noun
NP PP

NP conj NP
Verb

Verb NP
Verb NP NP
VP PP

P NP

-

O OO0 OO OO0 O O O
ON - W PPN O



NIPSue

NNPg,e

I
Sue

Lexicalized PCFG Parsers

Swalked Rule P
va&IkEd $ VPwaIked % VBDwaIked PPinto 0.5
/\
VBD yalked PPinto
l /\
walked Pinto NPstore
| N

into DTthe NNstore

l
the

store



Dependencies

* “Bell, based in Los Angeles, makes and distributes
electronic, computer and building products.”

makes nsubj(makes-8, Bell-1)
lconj » nsubj(distributes-10, Bell-1)
acl(Bell-1, based-3)
nsubj  distributes dobj case(Angeles-6, in-4)
Mbj \,ij compound(Angeles-6, Los-5)
nmod:in(based-3, Angeles-6)
Bell products root(ROOT-0, makes-8)
lpartmod lamod cc(makes-8, and-9)

conj:and(makes-8, distributes-10)

amod I amod
based electronic amod(products-16, electronic-11)

lprep_in '/onj_anNonj_and conj:and(electronic-11, computer-13)
amod(products-16, computer-13)

Angeles computer building _
cc(electronic-11, and-14)
l”" conj:and(electronic-11, building-15)
Los amod(products-16, building-15)

dobj(makes-8, products-16)



Semantics
Text is not only a bag of words...

e The order of words matter!

{‘a’, ‘chasing’, ‘cat’, ’ fish’, ’is’, 'the’}

/
“a cat is chasing the fish” # “a fish is chasing the cat”
| .
cat | kat| fish ! | fisH |
noun noun (pl. same or fishes)
1 a small domesticated carnivorous a limbless cold-blooded vertebrate
mammal with soft fur, a short snout, animal with gills and fins and

and retractile claws. It 1s widely kept
as a pet or for catching mice, and
many breeds have been developed.

living wholly in water: the sea s

thick with fish.



Semantics
Text is not only a bag of words...

* The order of words matter!
{‘a’, ‘chasing’, ‘cat’, ’ fish’, ’is’, 'the’}

“a cat is chasing the fish” # “a fish is chasing the cat”

N S

Animal



NLP Techniques

* Semantic analysis



Semantic Analysis

* The meaning of words and relations between words

visible | "vizobal | >ynhonym of
. seeable

adjective

1 able to be seen: the church spire is

antonym of vistble from miles away.
length
hidden
hyponym of
distance - altitude Size

hypernym of



WordNet

Hierarchically organized lexical database

Synset: a set of synonyms that can be used
interchangeably in a particular context

Synsets are related through pointers

Pointer may represent a lexical or a semantic
relation



WordNet - meaning of words

* Fish

Noun

e S: (n) fish (any of various mostly cold-blooded aquatic vertebrates usually
having scales and breathing through gills) “the shark is a large fish"; "in the
living room there was a tank of colorful fish”

e S:(n) fish (the flesh of fish used as food) “in_Japan most fish is eaten raw";
"after the scare about foot-and-mouth disease a lot of people started eating
fish instead of meat”; "they have a chef who specializes in fish"

e S:(n) Pisces, Fish ((astrology) a person who is born while the sun is in Pisces)

e S: (n) Pisces, Pisces the Fishes, Fish (the twelfth sign of the zodiac; the sun is
in this sign from about February 19 to March 20)

Verb

e S: (v) fish, angle (seek indirectly) "fish for compliments”
e S: (v) fish (catch or try to catch fish or shellfish) “/ like to go fishing on
weekends”



WordNet - relations between words

* Fish

e S: (n) fish (any of various mostly cold-blooded aquatic vertebrates usually
having scales and breathing through qills) “the shark is a large fish”; "in the
living room there was a tank of colorful fish"

o direct hyponym | full hyponym
o part meronym
o member holonym
o direct hypernym | inherited hypernym | sister term
e S: (n) aquatic vertebrate (animal living wholly or chiefly in or on
water)

e S: (n) vertebrate, craniate (animals having a bony or
cartilaginous skeleton with a segmented spinal column and a
large brain enclosed in a skull or cranium)

e S: (n) chordate (any animal of the phylum Chordata
having a notochord or spinal column)
e S:(n) animal, animate being, beast, brute, creature,
fauna (a living organism characterized by voluntary
movement)




NLP Techniques

* Sentiment analysis



Sentiment Analysis

* Classify the polarity of a text

+3 -1 4
“I love this movie but | really hate the main actor.”

l / N\

positive booster negative

Positive sentiment strength: 3

Negative sentiment strength: -5



NLP Techniques

Language Models (LM)
Syntactic analysis
Semantic analysis
Sentiment analysis
Emotion analysis



Emotion Analysis

|II

Joy: “That’s great work guys

(]

Anger:
youl!”

| will come over to your work and slap

Sadness: “Sorry for the late response.”



Outline

e SE tasks using IR and NLP

— Task definition
— Input

— Qutput

— Preprocessing
— Techniques

— Evaluation

— Tools used

e Hands-on



Improving the Quality of the Code Lexicon

v Identifying poor quality identifiers
v Identifying naming inconsistencies




Identifying Poor Quality Identifiers

* Task: Identifying identifiers that are difficult to
understand, unclear, meaningless, etc.

 Examples:

4
¥
<
—
o0
-
W

— asSz

— foo




Identifying Poor Quality Identifiers

— Source code

— Mapping between program identifiers and
domain concepts

— Standard lexicon dictionary (a dictionary of
allowed terms)

— Synonym/abbreviation dictionary



Identifying Poor Quality Identifiers

— ldentifiers with poor quality
— Suggestions to improve the identifiers

—
>
al
—
D
O




Identifying Poor Quality Identifiers

— Splitting

O
Z
¥
n
L
O
O
oc
al
L
oc
al




Identifying Poor Quality Identifiers

— Ildentifying non-standard lexicon using

dictionaries
meaningless: foo
synonyms: aCopy and printReplica

abbreviations: aSz //a:array, Sz: size



Identifying Poor Quality Identifiers

— Identifying inconsistencies using mappings
between identifiers and concepts

file name
° /
. file
Homonym: T file pointer

file - ——  file name
Synonym: file name—~T



Identifying Poor Quality Identifiers

— Identifying inconsistencies using mappings
between identifiers and concepts (cont.)

Conciseness
violation: file —— file name

Animal
5 =

a class hierarchy: Monkey| [Violin

No hyponymy in




Identifying Poor Quality Identifiers

— Inconsistencies based on the concepts (cont.)
* |dentified using:
— identifiers to concept mapping

— identifier inclusion (syntactic conciseness and
consistency)

— ontology
— number of characters

— string similarity



Identifying Poor Quality Identifiers

« Syntactical standardization

class:

method:

Functionld
Context
Qualifier
Action
SimpleAction
ComplexAction
IndirectAction
DirectAction

ActionSpecifier

Compute // must be a noun

addition // must be averb

[Context] (Action | PropertyCheck | Transformation)

Qualifier <noun>

(<adjective> | <noun>)*

SimpleAction | ComplexAction

DirectAction | IndirectAction

ActionOnObject | DoubleAction

Qualifier <noun> ActionSpecifier {Head word = <noun> }
<verb> ActionSpecifier {Head word = <verb>}
(<adjective> | <adverb> | <preposition> Qualifier <noun>)*



Identifying Poor Quality Identifiers

— Other types of measures

overloaded identifiers: saveAndPrint
spelling errors: Examlpe

useless type: String nameString

o ldentified using POS analysis, grammatical
relations, spell checker, identifier
containment



Identifying Poor Quality Identifiers

— Case study with quantitative and qualitative
analyses

— Precision of detected poor quality identifiers

Z
=
|_
<
D)
—
<
>
L]




Identifying Poor Quality Identifiers

— Semantic relations: WordNet

- — POS tagging:

@ * Minipar

N * WordNet

O

= —Spell checker: Jazzy




ldentifying Naming Inconsistencies

Task: Identify entities where the name is inconsistent
with the type, functionality, or documentation.

* Examples:

— method named isNavigateForwardEnabled
documented as backward navigation

— method named iterator whose implementation
is only creating and returning an object



ldentifying Naming Inconsistencies

— Project bytecode
— Source code




ldentifying Naming Inconsistencies

— Inconsistencies
— Suggested solution

—
>
al
—
D
O




ldentifying Naming Inconsistencies

— Splitting
— Tokenization

O
Z
¥
n
L
O
O
oc
al
L
oc
al




ldentifying Naming Inconsistencies

— Contrast the name and type of an entity

opposite name and EnterTransport
type: exiltTransport(..)

says many,

. boolean statistics
contains one:



ldentifying Naming Inconsistencies

— Contrast the name and comment of an
entity

opposite name and comment:

// ... default exclude ...
String INCLUDE NAME DEFAULT

« Defined through a grounded theory approach

 ldentified using POS analysis, general
ontology, grammatical relations



ldentifying Naming Inconsistencies

— Contrasting the name and implementation
of an entity

Semantic profile of an “iterator” method:

These methods often call other methods with the same name and
create objects. They never return void, write parameter values to fields
or call themselves recursively, and very rarely write to fields or return
parameter values, and rarely have parameters, contain loops, use local

variables, do runtime type-checking or casting, return field values, have
branches or have multiple return points.

public Iterator iterator() throws
DomainRegistryException{...}



ldentifying Naming Inconsistencies

— Detection precision
— Developers’ perception

Z
=
|_
<
D)
—
<
>
L]




ldentifying Naming Inconsistencies

— Semantic relations:

= * WordNet
(;;)' — POS tagging:
- * WordNet
g e Stanford’s POS Tagger




Building Software Ontologies

v’ Domain ontology

v Identifying semantically related words




Extracting Domain Concepts

e Task: automatically extracting domain
concepts and relations from source code

 Examples:

rt server
I. Fﬂ | has property | ® '
| G
has propert e
R -
\ e
[ & 'mail sender’ 1 @ 'mail merger'
- ] =tart -
: L, |
iza Y
L iz &
| ® sender |

(0 e




Extracting Domain Concepts

— Source code

— Documentation (e.g., user manuals, web
sites)




Extracting Domain Concepts

— Domain concepts
— Ontological relations

—
>
al
—
D
O




Extracting Domain Concepts

— Splitting

— Tokenization

— Abbreviation expansion
— Stop words removal

— Stemming

O
Z
T
wn
L
O
O
oc
al
L
oc
al




Extracting Domain Concepts

— Sentence templates based on constraints
for different types of entities

— Example: method addpanelField defined
in class MergeGui generates sentence:

“Subjects add panel field”

NN

Subj : :

ob;

[ Field ]

isAT
[||]|:> [ Panel field ]

/ add

[ Merge ou ]




Extracting Domain Concepts

— Filter the ontology using terms based on:

e Keywords
* LDA

L
>
S
=
L
O
L
—




Extracting Domain Concepts

— Precision of the POS tagging
— Number of connected components

— Case study: navigating the concepts for query
reformulation in the context of bug location

— Precision and recall of the extracted domain
concepts compared to a gold set

— Qualitative analysis



Extracting Domain Concepts

— POS tagging:
* Minipar
* WordNet
— Grammatical relations:
* Minipar
* TreeTagger
— Topic modeling: Dragon Toolkit



Identifying Semantically Related Words

* Task: Identifying pairs of words that are
semantically related, e.g., same or opposite
meaning

* Examples:

— call - invoke

— Size - capacity

— serialize - deserialize
— header - trailer

— makeFullMap - makeEmptyMap



Identifying Semantically Related Words

— Project description and tags extracted from a
hosting site

— Source code




Identifying Semantically Related Words

— Similar words
— Ranked list of similar tags

—
>
al
—
D
O




Identifying Semantically Related Words

— Splitting

— Tokenization

— Stop words removal
— Stemming

O
Z
¥
n
L
O
O
oc
al
L
oc
al




Identifying Semantically Related Words

— Similarity between terms (VSM with tf-idf)

sim(tl, tg) — W1 X dsim(tl, tQ) + Wo X tsim(tl, tz)

— Cluster tags using the similarity between
terms to build a hierarchical taxonomy



Identifying Semantically Related Words

— High similarity between pairs of sentences

containing at least one common word
"None mounted file for this track.”

"None accessible file for this track.”

“If you do not have apr pool clear
ln a wrapper”
“If you do not have apr pool destroy
ln a wrapper”.



Identifying Semantically Related Words

— Frequency of comment-code word pairs of
main action verbs for methods

/** Searches an attribute.*/
XMLAttribute findAttribute(..){..}

/** Cancels the current HTTP request.*/

void jsxFunction abort(){..}



Identifying Semantically Related Words

— Precision of the identified pairs of words

— User study evaluating a subset of the
identified pairs on a Likert scale.

— Sensitivity evaluation for thresholds (precision
and recall)



Identifying Semantically Related Words

— Stanford’s POS Tagger for comments
— Custom POS Tagger for method names
— WordNet

O
L]
Vg
>
Vg
—
O
O
—




Generating Documentation Automatically

v Extracting a set of important keywords
v Generating natural language sentences




Extracting a Set of Important Keywords

* Task: Identify the keywords that best
represent a software artifact

* Example: {“match”, “text”, “ignorecase"}

public static boolean regionMatches(boolean ignoreCase,
Segment text, int offset, char[] match) {
int length = offset + match.length;
if (length > text.offset + text.count)
return false;
char[] textArray = text.array;
for(int i = offset, j = 0; i < length; i++, j++)

{
char cl = textArrayl[i];
char c2 = matchl[j];
if (ignoreCase)
{
cl = Character.toUpperCase(cl);
c2 = Character.toUpperCase(c2);
}
if(cl '= c2)
return false;
+

return true;



Extracting a Set of Important Keywords

— Source code
— Execution traces




Extracting a Set of Important Keywords

— Sets of keywords that best represent each
* Class
* Method

* Execution trace segment

—
>
al
—
>
O




Extracting a Set of Important Keywords

— Splitting

— Tokenization

— Stop words removal
— Stemming

O
Z
¥
n
L
O
O
oc
al
L
oc
al




Extracting a Set of Important Keywords

— Compare IR-techniques

— Eye-tracking experiment to decide on the
importance of terms

— |IR-techniques: VSM, LSI, LDA
— Weighting schemes: tf, tf-idf, log, and binary



Extracting a Set of Important Keywords

— Developers assessing the quality of the
summaries

— Comparison with manually summarized
artifacts

Z
=
|_
<
D)
—
<
>
L]




Generating Natural Language Sentences

* Task: Generating natural language sentences
summarizing a software artifact.

 Examples
— Method summary: “Export plan component to svg.”

— Class summary: “An AbstractPlayer extension for m
player handlers. This entity class consists mostly of
mutators to the m player handler's state. ...”

— Release note: “New class SearcherLifetimeManager
implementing Closeable. ...”



Generating Natural Language Sentences

— Project source code

— Set of releases

— Issue tracker

— Version control repository




Generating Natural Language Sentences

— Natural language sentences representing
* method comments
* class comments
* release notes

—
>
al
—
>
O

e commit notes




Generating Natural Language Sentences

— Splitting
— Tokenization
— Abbreviation expansion

O
Z
¥
n
L
O
O
oc
al
L
oc
al




Generating Natural Language Sentences

— Method summaries
e Statement selection
—Ending statements

—Statement with a method call with the
same action

—Conditional expressions



Generating Natural Language Sentences

— Method summaries (cont.)
* Sentence templates
—E.g., method call template

action theme secondary-args
and get return-type [if M returns a value]

oS .print (msqg)

_— /
action themeé
tion_—Theme>

/* Print message to output stream */



Generating Natural Language Sentences

— Class summaries based on class and method
stereotypes

* Text generation
—General description
—Stereotype description
—Behavior description
—Inner classes enumeration



Generating Natural Language Sentences

— Class summaries based on class and method

stereotvoes

public class MPlayerHandler extends AbstractPlayer {

public static final boolean GAP =

private static final String LIM
private static final String WIN

private static final String QUII
private static final String SLA

private Process process;

' CONSTRUCTOR!.]
public MPlayerHandler() {]

COLLABORATORL}

private static boolean testMPla

_T’
private void play(AudloFlle f) ¢

. .__AH[[D
public void finish() {[]

false;

An AbstractPlayer extension for m player
handlers. This entity class consists mostly
of mutators to the m player handler's state.

It allows managing:
- mute;

- volume; and

- next with no gap.

It also allows:

- finishing m player handler;

- handling next;

- playing audio file £f;

- stopping m player handler;

- playing m player handler; and
- handling previous.




Generating Natural Language Sentences

— Release notes by organizing changes hierarchically and by
using sentence templates

* |dentifying and prioritizing code changes from the
versioning systems

— Files added, removed, moved
— Classes added, removed, renamed, moved

— Methods changed (signature, visibility, source code, or
set of thrown exceptions)



Generating Natural Language Sentences

— Release notes by organizing changes
hierarchically and by using sentence templates

* Sentence templates

—Deleted file: “File <file name> has been
removed.”

—Added class: class summaries
(JSummarizer)



Generating Natural Language Sentences

— Release notes by organizing changes hierarchically
and by using sentence templates

 Other changes considered
— Licensing
— Documentation
— Libraries
— Refactorings

— |ssues



Automatic RElease Notes generAtor - Apache Commons Codec 1.7

New Features

CODEC-136 Use Charset objects when possible, create Charsets class for required character encodings
CODEC-133 Add classes for MD5/SHAl/SHA-512-based Unix crypt(3) hash variants.

CODEC-88 Base32 encoder

CODEC-63 Implement NYSIIS

fixes

&
Q

CODEC-157 DigestUtils: Add MD2 APIs
CODEC-156 DigestUtils: add APIs named after standard alg name SHA-1
CODEC-155 DigestUtils.getDigest (String) should throw IllegalArgumentException instead of RuntimeException

CODEC-152 DigestUtils.getDigest (String) looses the orginal exception

CODEC-147 BeiderMorse phonetic filter give uncertain results
CODEC-132 BeiderMorseEncoder OOM issues

CODEC-131 DoubleMetaphone javadoc contains dead links

CODEC-130 Base64InputStream.skip skips underlying stream, not output

CODEC-96 Baseb4 encode() method is no longer thread-safe, breaking clients using it as a shared BinaryEncoder

L]
>
o
Z
I
O
L]
—

Improvements

e CODEC-151 Remove unnecessary attempt to fill up the salt wvariable in UnixCrypt
CODEC-150 Remove unnecessary call to Math.abs ()

CODEC-148 More tests and minor things

CODEC-143 StringBuffer could be replaced by StringBuilder for local variables
CODEC-139 DigestUtils: add updateDigest methods and make methods public.
CODEC-138 Complete FilterInputStream interface for BaseNCodecInputStream

Deprecated Code Components

Added Code Components

Refactored Source Code Files

Other Changes

Known Issues




Generating Natural Language Sentences

* Developers
— Accuracy
— Content Adequacy
— Conciseness

Z
=
|_
<
D)
—
<
>
L]

— Importance
— In-field study




Generating Natural Language Sentences

* Tools used:
— Software Word Usage Model (SWUM)
— JSummarizer for generating class summaries

4
¥
<
—
o0
>
W




Outline

e Hands-on



Tools to install

srcML: for transforming source code to xmil:
http://www.srcml.org/downloads.html

XOM: for parsing xml files and querying them with
XPath: http://www.xom.nu/

WordNet: for extracting semantic relations:
http://wordnet.princeton.edu/wordnet/download/cu
rrent-version/

JWNL, Java API for WordNet:
https://sourceforge.net/projects/jwordnet/files/jwnl/J

WNL%201.4/jwnl14-rc2.zip/download

Stanford CoreNLP for grammatical analysis:
http://stanfordnlp.github.io/CoreNLP/download.html




Preparations

Download the source code:

http://www.veneraarnaoudova.ca/wp-
content/uploads/2016/07/SaTToSE 16-TR NLP.zip

Change ProjectConfiguration
Parse source code with SrcML
Run SaTToSETest



TODOs

* Extract name and preceding comment of
attributes and methods

* Find antonyms in the name and comments of

an attribute

e Check if method names start with a verb



More TODOs

XPath: Fix

getPreceedingCommentsForAttribute to

collect only the comments for the attribute that
is passed as parameter.

Preprocessing: remove stopwords before
guerying WordNet for semantic relations

WordNet: change startsWwithverb to use

WordNet in addition to POS tagging to reduce
false negatives

Stanford CoreNLP: extract negation relations and
incorporate them in the antonym detection



