
The	Use	of	Text	Retrieval	and	
Natural	Language	Processing	in	

Software	Engineering

Dr.	Venera	Arnaoudova
Assistant	Professor	

2015-06-22, 4:49 PM

Page 1 of 1file:///Users/Neni/Documents/WSU/logos/wsu-signature-vertical.svg

Tutorial	@	SaTToSE 2016

The	Use	of	Text	Retrieval	and	
Natural	Language	Processing	in	

Software	Engineering

Sonia	Haiduc

Venera Arnaoudova

Andrian Marcus

Giuliano Antoniol

2015-06-22, 4:49 PM

Page 1 of 1file:///Users/Neni/Documents/WSU/logos/wsu-signature-vertical.svg

Outline
• Introduction

• Background	on	IR	and	NLP

• SE	tasks	using	IR	and	NLP
– Task	definition
– Input
– Output
– Preprocessing	
– Techniques
– Evaluation
– Tools	used

• Hands-on

Textual	Information	in	Software
• Captures	concepts	of	the	problem	domain,	developer	

intentions,	developer	communication,	etc.

• Found	in	many	software	artifacts:
– Requirements
– Design	documents
– Source	code	(identifiers,	comments)
– Commit	notes
– Documentation
– User	manuals
– Q/A	websites
– Developer	communication:	emails,	chat,	tweets
– Etc.

Text	Retrieval

• Information	Retrieval	(IR):	the	process	of	actively	
seeking	out	information	relevant	to	a	topic	of	interest	
(van	Rijsbergen)

• Text	Retrieval	(TR):	a	branch	of	IR	where	the	
information	is	stored	in	text	format
– Search	space:	collection	of	documents	(corpus)
– Document - generic	term	for	an	information	unit	

• book,	chapter,	article,	webpage,	etc.
• class,	method,	interface,	etc.
• individual requirement,	bug	description,	test	case,	e-mail,	design	
diagram,	etc.

Natural	Language	Processing

• Refers	to	the	use	and	ability	of	systems	to	
process	sentences	in	a	natural	language	such	
as	English	(rather	than	in	a	specialized,	
artificial	computer	language	such	as	C++)

• Combines	techniques	from	computer	science,	
artificial	intelligence,	computational	
linguistics,	probability	and	statistics	

TR	and	NLP	in	Software	Engineering

• Applied	to	over	30	different	SE	tasks

o Traceability	Link	Recovery
o Feature/concept/concern/bug	location
o Code	reuse
o Bug	triage
o Program	comprehension
o Architecture/design	recovery
o Quality	assessment	and	measurement
o Software	evolution	analysis
o Defect	prediction	and	debugging
o Automatic	documentation
o Testing

o Requirements	analysis
o Restructuring/refactoring
o Software	categorization
o Licensing	analysis
o Impact	analysis
o Clone	detection
o Effort	prediction/estimation
o Domain	analysis
o Web	services	discovery
o Use	case	analysis
o Team	management,	etc.

0

10

20

30

40

50

60

70

80
19
87

19
88

19
89

19
91

19
92

19
97

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

Publications	per	year

Outline
• Introduction

• Background	on	IR	and	NLP

• SE	tasks using IR	and	NLP
– Task	definition
– Input
– Output
– Preprocessing	
– Techniques
– Evaluation
– Tools	used

• Hands-on

A	Typical	TR	Application
1. Build	corpus
2. Index	corpus	– choose	the	TR	model
3. Formulate	a	query

• Manual	or	automatic
4. Compute	similarities between	the	query	and	

the	documents	in	the	corpus	(i.e.,	relevance)
5. Rank the	documents	based	on	the	similarities
6. Return	the	top	N	documents	as	the	result	list
7. Inspect	the	results
8. GO	TO	3.	if	needed	or	STOP

Creating	a Corpus	of	a
Software	System

• Parsing	software	artifacts	and	extracting	documents
– corpus – collection	of	documents	(e.g.,	methods)

• Text	normalization	(white	space	and	non-textual	
tokens	removal,	tokenization)

• Splitting:	split_identifiers,	SplitIdentifiers,	etc.
• Stop	words	removal
– common	words	in	English,	programming	language	
keywords,	project-specific	words,	etc.

• Abbreviation	and	acronym	expansion
• Stemming

Extracting	Documents

• Documents	can	be	at	different	granularities	(e.g.,	
methods,	classes,	files,	emails,	bug	descriptions,	etc.)

Extracting	Documents

• Documents	can	be	at	different	granularities	(e.g.,	
methods,	classes,	files,	emails,	bug	descriptions,	etc.)

Transform	Source	Code	to	Plain	Text

public void run IProgressMonitor monitor throws
InvocationTargetException InterruptedException if m_iFlag

processCorpus monitor checkUpdate else if m_iFlag
processCorpus monitor UD_UPDATECORPUS else

processQueryString monitor if monitor isCancelled throw
new InterruptedException the long running

Text	Normalization

• Break	up	the	text	in	“tokens”

• Problem	cases
– Numbers: “M16”,	“2001”
– Hyphenation: “MS-DOS”,	“OS/2”
– Punctuation: “John’s”,	“command.com”
– Case: “us”,	“US”
– Phrases: “venetian	blind”

Splitting

• Splitting:	decomposing	identifiers	into	their	
compound	words

• Identifiers	may	use	division	markers	(e.g.,	
camelCase	and	_)

• Examples:	
– getName ->	‘get’,	‘Name’
– getMAXstring ->	‘get’,	‘MAX’,	‘string’
– ASTNode ->	‘AST’,	‘Node’
– account_number ->	‘account’,	‘number’
– simpletypename ->	‘simple’,	‘type’,	‘name’

Stop	Words

• Very	frequent	words,	with	no	power	of	
discrimination	(e.g.,	language	keywords)

• Typically	function	words,	not	indicative	of	
content

• The	stop	words	set	depends	on	the	document	
collection	and	on	the	application	(e.g.,	
language	keywords)

Abbreviation and	
Acronym	Expansion

• Expand	abbreviations	and	acronyms	to	the	
corresponding	full	words

• Examples:	
– mess ->	‘message’	

– src ->	‘source’

– regex ->	‘regular	expression’

– ASCII ->	‘American	Standard	Code	for	Information	Interchange’

– auth ->	‘authenticate’	OR	‘author’

Stemming

• Identify	morphological	variants,	creating	“classes”
– system,	systems
– forget,	forgetting,	forgetful
– analyse,	analysis,	analytical,	analysing

• Replace	each	term	by	the	class	representative	
(root	or	most	common	variant)

Most	Popular	TR	Models	Used	in	SE

• Vector	Space	Model	(VSM)

• Latent	Semantic	Indexing	(LSI)

• Latent	Dirichlet Allocation	(LDA)

• Etc.

The	Vector-Space	Model
• Assume t distinct	terms	remain	after	preprocessing

– call	them	index	terms	or	the	vocabulary
• These	“orthogonal” terms	form	a	vector	space.

– Dimension	=	t =	|vocabulary|	
• Each	term,	i,		in	a	document	or	query,	j,	is	given	a	real-

valued	weight,	wij.

• Both	documents and	queries are	expressed	as	
t-dimensional	vectors	(most	vectors	are	sparse):

dj =	(w1j,	w2j,	…,	wtj)
• Each	vector	holds	a	place	for	every	term	in	the	
collection	

Query	and	Document	Vectors

Document-Term	Matrix

• A	collection	of	n documents	can	be	represented	in	the	
VSM	by	a	document-term matrix.
• An	entry	in	the	matrix	corresponds	to	the	“weight” of	a	
term	in	the	document
–zero	means	the	term	has	no	significance	in	the	document	or	it	
simply	doesn’t	exist	in	the	document.

Term	Weights	– Local	Weights
• The	weight of	a	term	in	the	document-term	matrix	wik is	
a	combination	of	a	local	weight	(lik)	and	a	global	weight	
(gik)	wik =	lik *	gik

• Local	weights	(lik) used	to	indicate	the	importance	of	a	
term	relative	to	a	particular	document:
– term	frequency	(tfik):	number	of	times	term	i appears	in	doc	k	
(the	more	a	term	appears	in	a	doc,	the	more	relevant	it	is	to	
that	doc)

– log-term	frequency	(log	tfik):	mitigates	the	effect	of	tf -
relevance	does	not	always	increase	proportionally	with	term	
frequency

– binary	(bik):	1	if	term	i appears	in	doc	k,	0	otherwise

Term	Weights	– Global	Weights
• Global	weight	(gik)	is	used	to	indicate	the	importance	
of	a	term	relative	to	the	entire	document	collection.	
Used	as	an	indication	of	a	term’s	discrimination
power.	
– document	frequency	(df i):	number	of	documents	
containing	term i;	rare	terms	are	more	informative	than	
frequent	terms;	dfi is	an	inverse	measure	of	the	
informativeness of	t

– inverse	document	frequency	(idfi): idfi =	log2 (N/dfi)	- N:	
total	number	of	documents;	log	is	used	to	“dampen”	the	
effect;	IDF	provides	high	values	for	rare	words	and	low	
values	for	common	words

Query-Document	Similarity

• A	vector	similarity	measure between	the	query	and	
documents	is	used	to	rank	retrieved	documents

Cosine	similarity

Identical	meaning:	value	of	cosine	=	1
Unrelated	meaning:	value	of	cosine	=	0

i i
ii

i
ii

yx

yx
22

Two	Problems	with	VSM
• VSM	uses	exact	word	matching

– If	the	exact	terms	from	a	query	are	not	found	in	a	relevant	
document,	the	document	will	not	be	retrieved

• The	same	concept	can	be	expressed	using	different	sets	
of	terms	(synonyms)
– e.g.	bandit,	brigand,	thief

• Identical	terms	can	be	used	in	very	different	semantic	
contexts	(homonyms)
– e.g.	bank

• repository	where	important	material	is	saved
• the	slope	beside	a	body	of	water

Latent	Semantic	Indexing

• Uses	linear	algebra	technique	called	Singular	Value	
Decomposition (SVD)	to	simulate	human	learning	of	
word	and	passage	meaning
– attempts	to	estimate	the	hidden	structure
– discovers	the	most	important	associative	patterns	
between	words	and	concepts

– reduces	the	document-term	matrix	to	a	smaller	
dimension

• Its	success	depends	on	choosing	the	right	number	of	
dimensions	to	extract

Evaluating	TR	Systems

documents relevant of number Total
retrieved documents relevant of Number recall =

retrieved documents of number Total
retrieved documents relevant of Number precision=

Relevant
documents

Retrieved
documents

Entire
document
collection

retrieved &
relevant

not retrieved but
relevant

retrieved &
irrelevant

not retrieved &
irrelevant

retrieved not retrieved

re
le

va
nt

irr
el

ev
an

t

Trade-off	Between	Recall	and	Precision

10

1

Recall

Pr
ec

isi
on

The ideal
Returns relevant documents but

misses many useful ones too

Returns most relevant
documents but includes

lots of junk

Computing	Recall/Precision	Points
• For	a	given	query,	produce	the	ranked	list	of	documents.
• Any	threshold	on	this	ranked	list	produces	different	sets	of	

retrieved	documents.

• Mark	each	document	in	the	ranked	list	that	is	relevant	
according	to	the	gold	standard.

• Compute	a	recall/precision	pair	for	each	position	in	the	ranked	
list	that	contains	a	relevant	document.

Top

threshold

Ranked	List	Threshold(s)
• Fixed	one		-- take	the		first	10	results

• Variable	such	as	score	threshold:	keep	element	with	
score	in	the	top	5%	

• Gap	threshold:	
– traverse	the	ranked	list	(from	highest	to	lowest	score)		
– find	the	widest	gap	between	adjacent	scores
– the	score	immediately	prior	to	the	gap	becomes	the	
threshold

F-Measure

• The	traditional	F-measure	or	balanced	F-score	(F1	
score)	is	the	harmonic	mean	of	precision	and	recall	

Precision	and	Recall:	the	Holy	Grail

• Precision	and	recall	do	not	tell	the	entire	story

Good
results

Top

Good
results

Top

• Average	precision:

Query	Formulation

• Usually	simple	bag	of	words
– Ex.	“tutorial	software	engineering	text	retrieval”

• Natural	language	sentences	or	paragraphs
– Ex.	“When	is	scheduled	the	tutorial	on	Text	
Retrieval	Approaches	in	Software	Engineering?”

• Existing	documents

Query	Analysis	and	Expansion

• Spellchecking	->	change	words

• Compare	with	vocabulary	->	remove	words

• Use	thesaurus	->	suggest	alternative	words	
(synonyms	– from	dictionary,	source	code,	etc.)

Query	Modification

• Problem:	How	can	we	reformulate	the	query	
to	help	a	user?
– Thesaurus	expansion:
• Suggest	terms	similar	to	query	terms

– Relevance	feedback:
• Suggest	terms	(and	documents)	similar	to	
retrieved	documents	that	have	been	judged	to	
be	relevant

–More	advanced:	automatic	based	on	query	
properties,	mining	terms	from	source	code,	etc.

Using	TR	in	SE	– Option	1

• Formulate	the	SE	problem	as	a	text	retrieval	
problem

• Convert	the	software	artifacts	into	a	text	
corpus

• Choose	the	TR	model	best	suited	to	the	
problem

SE	as	TR

• Concept/concern/feature	location	in	software
• Traceability	link	recovery	between	software	artifacts
• Impact	analysis
• Software	reuse
• Bug	triage
• Requirements	analysis	
• Etc.

Using	TR	in	SE	– Option	2

1. Analysis	of	the	textual	information	in	software

1. Convert	the	software	artifacts	into	a	text	
corpus

2. Choose	the	TR	model	best	suited	to	the	
problem

3. Compute	similarities	between	documents

4. Perform	analysis	based	on	these	measures

SE	as	Text	Analysis

• Software	categorization
• Refactoring	and	restructuring
• Reverse	engineering
• Bug	triage
• Clone	detection
• Requirements	analysis
• Defect	prediction
• Change	impact	analysis
• Etc.

Advantages	of	Using	TR

• No	predefined	grammar	and	vocabulary

• Some	techniques	able	to	infer	word	relationships	
without	a	thesaurus	or	an	ontology

• Goes	beyond	exact	string	matching

• Offers	a	ranked list	of	results

Limitations	of	Using	IR

• Many	TR	models	are	not	intuitive	for	humans	
->	hard	to	understand	the	results	of	TR

• Parameter	Configuration

• Ignores	document	and	sentence	structure,	
and	relationships	between	consequent	words	
are	ignored	(“bag	of	words”)

Outline
• Introduction

• Background	on	IR	and	NLP

• SE	tasks using IR	and	NLP
– Task	definition
– Input
– Output
– Preprocessing	
– Techniques
– Evaluation
– Tools	used

• Hands-on

Sequences	of	words

• The	order	of	words	matter!

“a	cat is	chasing	the	fish” “a	fish is	chasing	the	cat”

{‘a’,	’chasing’,	‘cat’,	’	fish’,	’is’,	’the’}

Text	is	not	only	a	bag	of	words…

NLP	Techniques

• Language	Models	(LM)

Language	Models	(LM)

• Assign	probabilities	 for	sequences	of	words

P(happy|“I	am”)?

uni-gram:	~	P(happy)	

bi-gram:	~	P(happy|am)

tri-gram:	~	P(happy|I am)
…
n-gram

….	happy

….	am	happy

….	I	am	happy

Language	Models	(LM)

• In	general:

Data	sparsity

• Corpus:	

• “I	am	smiling”

• “You	are	happy”

• “We	are	happy”							

• P(happy|I	am)	if	we	use	a	tri-gram	language	model?

Grammar

• The	order	of	words	matter!

“a	cat is	chasing	the	fish” “a	fish is	chasing	the	cat”

{‘a’,	’chasing’,	‘cat’,	’	fish’,	’is’,	’the’}

Text	is	not	only	a	bag	of	words…

Subject

Noun NounNoun Noun

SubjectObject Object

NLP	Techniques

• Language	Models	(LM)
• Syntactic	analysis

Tagging	words	and	phrases

• Tagging	words	with	their	
respective	Part-Of-
Speech	(POS)

NP:	noun	phrase
VP:	verb	phrase

VB:	verb
JJ:	adjective
NN:	noun

• Chunking

Syntactic	Analysis

• Identifying	grammatical	relations	between	words

amod:	adjectival	modifier	
dobj:	direct	object

Stanford	NLP	Software

• Stanford	CoreNLP

– Stanford	Tokenizer

– Stanford	POS	Tagger

– Stanford	Parser

– …

• …

“When	are	we	going	to	hear	about	applications	of	
NLP	in	Software	Engineering?”

Stanford	POS	Tagger

WRB Wh-adverb
VBP Verb,	non-3rd	person	singular	present
PRP Personal	pronoun
VBG Verb,	gerund	or	present	participle
VB Verb,	base	form
IN Preposition	or	subordinating	conjunction
NNP Proper	noun,	 singular

• What	is	the	POS	of	the	word	back?

– Adjective	(JJ):	“The	back door.”

– Noun	(NN):	“On	my	back.”

– Adverb	(RB):	“Win	the	voters	back.”

– Verb	(VB):	“Promised	to	back the	bill.”

POS	Taggers	challenge

– Neighbouring	words

–Word	probabilities	in	general

What	do	POS	Taggers	rely	on?

I	play	badminton	
Verb,	non-3rd	person	
singular	present	(VBP)

More	often	used	(NN)

• “Bell,	based	in	Los	Angeles,	makes	and	distributes	
electronic,	computer	and	building	products.”

Parse	trees

8/26/2015 Stanford Parser

http://nlp.stanford.edu:8080/parser/index.jsp 1/2

Bell/NNP ,/, based/VBN in/IN Los/NNP Angeles/NNP ,/, makes/VBZ and/CC

distributes/VBZ electronic/JJ ,/, computer/NN and/CC building/NN products/NNS ./.

Language: English Sample Sentence Parse

Stanford Parser

Please enter a sentence to be parsed:

Bell, based in Los Angeles, makes and distributes electronic, computer and
building products.

Your query

Bell, based in Los Angeles, makes and distributes electronic, computer and building products.

Tagging

Parse

(ROOT

 (S

 (NP

 (NP (NNP Bell))

 (, ,)

 (VP (VBN based)

 (PP (IN in)

 (NP (NNP Los) (NNP Angeles))))

 (, ,))

 (VP (VBZ makes)

 (CC and)

 (VBZ distributes)

 (NP

 (UCP (JJ electronic) (, ,) (NN computer)

 (CC and)

 (NN building))

 (NNS products)))

 (. .)))

Universal dependencies

nsubj(makes-8, Bell-1)

acl(Bell-1, based-3)

case(Angeles-6, in-4)

compound(Angeles-6, Los-5)

nmod(based-3, Angeles-6)

root(ROOT-0, makes-8)

cc(makes-8, and-9)

conj(makes-8, distributes-10)

amod(products-16, electronic-11)

conj(electronic-11, computer-13)

cc(electronic-11, and-14)

conj(electronic-11, building-15)

Probabilistic	Context-Free	
Grammar	(PCFG)	Parsers

PRule

Lexicalized	PCFG	Parsers

…

PRule

VPwalked→ VBDwalked+PPint o+++0.5

• “Bell,	based	in	Los	Angeles,	makes	and	distributes	
electronic,	computer	and	building	products.”

Dependencies

nsubj(makes-8,	Bell-1)
nsubj(distributes-10,	Bell-1)
acl(Bell-1,	based-3)
case(Angeles-6,	in-4)
compound(Angeles-6,	Los-5)
nmod:in(based-3,	Angeles-6)
root(ROOT-0,	makes-8)
cc(makes-8,	and-9)
conj:and(makes-8,	distributes-10)
amod(products-16,	electronic-11)
conj:and(electronic-11,	computer-13)
amod(products-16,	computer-13)
cc(electronic-11,	and-14)
conj:and(electronic-11,	building-15)
amod(products-16,	building-15)
dobj(makes-8,	products-16)

Bell

based

 partmod

distributes

nsubj

products

dobj

makes

nsubj

 conj_and

 dobj

Angeles

 prep_in

Los

 nn

electronic

 amod

building

amod

computer

amod

 conj_andconj_and

Figure 1: Graphical representation of the Stanford Dependencies for the sentence: Bell, based in Los
Angeles, makes and distributes electronic, computer and building products.

These dependencies map straightforwardly onto a directed graph representation, in which words in
the sentence are nodes in the graph and grammatical relations are edge labels. Figure 1 gives the graph
representation for the example sentence above.

Document overview: This manual provides documentation for the set of dependencies defined for
English. There is also a Stanford Dependency representation available for Chinese, but it is not further
discussed here. Starting in 2014, there has been work to extend Stanford Dependencies to be generally
applicable cross-linguistically. Initial work appeared in de Marneffe et al. (2014), and the current pro-
posal for Universal Dependencies (UD) can be found at http://universaldependencies.github.io/docs/.
This work is not (yet) reflected in this manual or in our software. For SD, Section 2 of the manual de-
fines the grammatical relations and the taxonomic hierarchy over them appears in section 3. This is then
followed by a description of the several variant dependency representations available, aimed at differ-
ent use cases (section 4), some details of the software available for generating Stanford Dependencies
(section 5), and references to further discussion and use of the SD representation (section 6).

2 Definitions of the Stanford typed dependencies

The current representation contains approximately 50 grammatical relations (depending slightly on the
options discussed in section 4). The dependencies are all binary relations: a grammatical relation holds
between a governor (also known as a regent or a head) and a dependent. The grammatical relations are
defined below, in alphabetical order according to the dependency’s abbreviated name (which appears in
the parser output). The definitions make use of the Penn Treebank part-of-speech tags and phrasal labels.

acomp: adjectival complement
An adjectival complement of a verb is an adjectival phrase which functions as the complement (like an
object of the verb).

2

Semantics
Text	is	not	only	a	bag	of	words…

• The	order	of	words	matter!

“a	cat is	chasing	the	fish” “a	fish is	chasing	the	cat”

{‘a’,	’chasing’,	‘cat’,	’	fish’,	’is’,	’the’}

Semantics
Text	is	not	only	a	bag	of	words…

• The	order	of	words	matter!

“a	cat is	chasing	the	fish” “a	fish is	chasing	the	cat”

{‘a’,	’chasing’,	‘cat’,	’	fish’,	’is’,	’the’}

Animal

NLP	Techniques

• Language	Models	(LM)
• Syntactic	analysis
• Semantic	analysis

Semantic	Analysis

• The	meaning	of	words	and	relations	between	words

hidden

antonym	of

seeable
synonym	of

length

size

hyponym	of

distance altitude
hypernym	of

WordNet

• Hierarchically	organized	lexical	database
• Synset:	a	set	of	synonyms	that	can	be	used	
interchangeably	in	a	particular	context

• Synsets	are	related	through	pointers
• Pointer	may	represent	a	lexical or	a	semantic
relation

WordNet	- meaning	of	words

• Fish

WordNet	- relations	between	words

• Fish

NLP	Techniques

• Language	Models	(LM)
• Syntactic	analysis
• Semantic	analysis	
• Sentiment	analysis

• Classify	the	polarity	of	a	text

“I	love this	movie	but	I	really hate the	main	actor.”

Positive	sentiment	strength:	3

Negative	sentiment	strength:	-5

Sentiment	Analysis

positive negativebooster

+3 -1 -4

NLP	Techniques

• Language	Models	(LM)
• Syntactic	analysis
• Semantic	analysis	
• Sentiment	analysis
• Emotion	analysis

Emotion	Analysis

• Joy:	“That’s	great	work	guys!”
• Anger:	“ I	will	come	over	to	your	work	and	slap	
you!”

• Sadness:	“Sorry	for	the	late	response.”
• …

Outline
• Introduction

• Background	on	IR	and	NLP

• SE	tasks using IR	and	NLP
– Task	definition
– Input
– Output
– Preprocessing	
– Techniques
– Evaluation
– Tools	used

• Hands-on

Improving	the	Quality	of	the	Code	Lexicon

✓Identifying	poor	quality	identifiers
✓Identifying	naming	inconsistencies

TA
SK

Identifying	Poor	Quality	Identifiers

• Task:	Identifying	identifiers	that	are	difficult	to	
understand,	unclear,	meaningless,	etc.

• Examples:
– aSz
– foo

SU
BT

A
SK

Identifying	Poor	Quality	Identifiers

– Source	code
– Mapping	between	program	identifiers	and	
domain	concepts

– Standard	lexicon	dictionary	(a	dictionary	of	
allowed	terms)

– Synonym/abbreviation	dictionary

IN
PU

T

Identifying	Poor	Quality	Identifiers

– Identifiers	with	poor	quality
– Suggestions	to	improve	the	identifiers

O
U
TP

U
T

Identifying	Poor	Quality	Identifiers

– Splitting

PR
EP

RO
CE

SS
IN

G

Identifying	Poor	Quality	Identifiers

– Identifying	non-standard	lexicon	using	
dictionaries

aCopy printReplica

foomeaningless:	

synonyms:	

abbreviations:	 aSz //	a:	array,	Sz:	size

andTE
CH

N
IQ

U
E

Identifying	Poor	Quality	Identifiers
– Identifying	inconsistencies	using	mappings	
between	identifiers	and	concepts

Homonym: file
file	name
file	pointer

Identifier	space Concept	space

Synonym:
file file	name

Identifier	space Concept	space

file_name

TE
CH

N
IQ

U
E

Identifying	Poor	Quality	Identifiers

Animal

Monkey Violin

No	hyponymy	in	
a	class	hierarchy:	

Conciseness	
violation: file file	name

Identifier	space Concept	space

TE
CH

N
IQ

U
E

– Identifying	inconsistencies	using	mappings	
between	identifiers	and	concepts	(cont.)

Identifying	Poor	Quality	Identifiers
– Inconsistencies	based	on	the	concepts	(cont.)

• Identified	using:

– identifiers	to	concept	mapping

– identifier	inclusion	(syntactic	conciseness	and	
consistency)

– ontology

– number	of	characters

– string	similarity

TE
CH

N
IQ

U
E

Identifying	Poor	Quality	Identifiers

class:
method:

Compute

addition
//	must	be	a	noun
//	must	be	a	verb

• Syntactical	standardization

TE
CH

N
IQ

U
E

Identifying	Poor	Quality	Identifiers
– Other	types	of	measures

spelling	errors:

useless	type:

Examlpe

String nameString

overloaded	identifiers: saveAndPrint

• Identified	using	POS	analysis,	grammatical	
relations,	spell	checker,	identifier	
containment

TE
CH

N
IQ

U
E

Identifying	Poor	Quality	Identifiers

– Case	study	with	quantitative	and	qualitative	
analyses

– Precision	of	detected	poor	quality	identifiers

EV
A
LU

A
TI
O
N

Identifying	Poor	Quality	Identifiers

– Semantic	relations:	WordNet	
– POS	tagging:	
• Minipar
• WordNet

– Spell	checker:	JazzyTO
O
LS

	U
SE

D

Identifying	Naming	Inconsistencies

• Task:	Identify	entities	where	the	name	is	inconsistent	
with	the	type,	functionality,	or	documentation.	

• Examples:
– method	named	isNavigateForwardEnabled
documented	as	backward navigation

– method	named	iterator whose	implementation	
is	only creating	and	returning an	object

SU
BT

A
SK

Identifying	Naming	Inconsistencies

– Project	bytecode	
– Source	code

IN
PU

T

Identifying	Naming	Inconsistencies

– Inconsistencies
– Suggested	solution

O
U
TP

U
T

Identifying	Naming	Inconsistencies

– Splitting
– Tokenization

PR
EP

RO
CE

SS
IN

G

Identifying	Naming	Inconsistencies
– Contrast	the	name	and	type	of	an	entity

opposite	name	and
type:

EnterTransport
exitTransport(..)

says	many,	
contains	one: boolean statistics

TE
CH

N
IQ

U
E

Identifying	Naming	Inconsistencies
– Contrast	the	name	and	comment	of	an	
entity

opposite	name	and	comment:
//	…	default	exclude …
String INCLUDE_NAME_DEFAULT

• Defined	through	a	grounded	theory	approach

• Identified	using	POS	analysis,	general	
ontology,	grammatical	relations

TE
CH

N
IQ

U
E

Identifying	Naming	Inconsistencies
– Contrasting	the	name	and	implementation	
of	an	entity

public Iterator iterator() throws
DomainRegistryException{…}

Semantic	profile	of	an	“iterator”	method:
These	methods	often call other	methods	with	the	same	name	and	
create	objects.	They	never	return void,	write parameter	values	to	fields	
or	call	themselves	recursively,	and	very	rarely write	to	fields	or	return	
parameter	values,	and	rarely	have	parameters,	contain	loops,	use	local	
variables,	do	runtime	type-checking	or	casting,	return	field	values,	have	
branches	or	have	multiple	return	points.	

TE
CH

N
IQ

U
E

Identifying	Naming	Inconsistencies

– Detection	precision
– Developers’	perception

EV
A
LU

A
TI
O
N

Identifying	Naming	Inconsistencies

– Semantic	relations:	
•WordNet

– POS	tagging:	
•WordNet
• Stanford’s	POS	TaggerTO

O
LS

	U
SE

D

Building	Software	Ontologies

✓Domain	ontology

✓Identifying	semantically	related	words

TA
SK

Extracting	Domain	Concepts

• Task:	automatically	extracting	domain	
concepts	and	relations	from	source	code	

• Examples:

TA
SK

filtering. Section III presents the case study with results
and discussion. Related works are presented in Section IV,
followed by conclusion and future works in Section V.

II. CONCEPT FILTERING

In this section, we summarize the approach for automated
ontology recovery that we proposed in a previous work [6]
and we motivate the need for concept filtering, applied to the
output of such an approach. The interested reader can find
more details about the rules used for ontology recovery in our
previous publication [6]. In the present paper, we focus on the
concept filtering step that is required after the initial ontology
has been produced, rather than the initial ontology production.

Ontology of a program can be constructed manually [10],
[11] or recovered automatically [2], [6]. In our previous
work [6], we have proposed and demonstrated an approach
which can be used to automatically build a program’s ontology
by exploiting the natural language information captured in the
identifier names. The steps we used in the proposed approach
are summarized below. One property which characterizes an
ontology is its level of formality. Based on this property,
an ontology can vary from a simple taxonomy with almost
no formalization, to one which uses a rigorously formalized
theory [12]. Our ontology is in between these two extremes,
since it uses a set of relations that connect concepts, but it does
not introduce constraints upon such relations. In the literature,
this is often referred to as a concept map. In the rest of the
paper, our use of the term ontology can be regarded as a
synonym for concept map.

Our approach [6], which uses natural language parsers
for extracting ontology from identifier names consists of the
following steps:

1) Creating term list: A term list is created by splitting class,
attribute and method identifier names using camel casing
and/or underscore. Hungarian notations are removed prior
to splitting, if they are used in the program element
names. Terms which match commonly known abbrevi-
ations or contractions are automatically expanded. The
expansion of unknown abbreviated or contracted terms
can be expanded using the approaches proposed in [13]–
[16].

2) Generating candidate sentences: Natural language parsers
such as Minipar 1 uses sentences as their input. Incom-
plete sentences such as those formed from the terms in
the identifiers highly reduced the accuracy of parsing.
Hence, we have defined rules based on the entity type
(class, attribute, method) to construct candidate sentences
from the splitted terms.

3) Sentence selection: The candidates proposed in the pre-
vious step are parsed and a sentence is automatically se-
lected for concept extraction based on a set of precedence
rules which depend on the result of the parse tree.

4) Extract concepts and relations: The terms identified as
noun and noun phrase by the parser are used as concepts

1http://webdocs.cs.ualberta.ca/ lindek/minipar.htm

in the ontology while the dependency relation among the
terms is mapped to a set of ontological relations. Verbs
are also used as ontological relations. Minipar is used for
parsing and identifying the lexical category of the terms
in steps (3) and (4).

Following the above steps, the ontology shown in Figure
2 can be extracted for class MailSender (see Fig. 1) of a
MailMerger program.

C l a s s m a i l S e n d e r {
i n t p o r t ;
S t r i n g s e r v e r ;

.
void s t a r t () ;
void s e t P o r t () ;
void s e t S e r v e r () ;

.
} ;

Fig. 1: Example: MailSender class of program MailMerger

Fig. 2: Ontology extracted for the MailSender class

The concepts in the ontology built using our approach
are composed of both problem concepts and implementation
concepts, as they are captured in the source code. In the
example given above, we have mailMerge and mailSender
concepts from the problem domain, and port and server from
the implementation. The size of the ontology extracted is
also directly proportional to the size of the program. For
larger systems, the ontology extracted may become very
large, thus reducing the support it can give for understanding
the domain knowledge captured in the source code. In fact,
many implementation details about the adopted algorithms
and data structures tend to corrupt the information in the
recovered ontology. This is because identifiers include terms
that refer to data structures (e.g., arrays, lists), protocols, GUI
elements (e.g., button, canvas, etc.), algorithms and specific
components used in the implementation (e.g., SQL database).
As a result, the recovered ontology might be very large, but
only a relatively small portion of it conveys useful information
about the domain. This motivates the present work, aimed at
filtering the ontology recovered by means of identifier analysis,
in order to obtain a smaller ontology, better focused on domain
concepts and relations.

A. Filtering techniques
To filter domain concepts from the extracted ontology, we

have used the IR based techniques which are described in the
following paragraphs.

Extracting	Domain	Concepts

– Source	code
– Documentation	(e.g.,	user	manuals,	web	
sites)

IN
PU

T

Extracting	Domain	Concepts

– Domain	concepts
–Ontological	relations	

O
U
TP

U
T

Extracting	Domain	Concepts

– Splitting
– Tokenization
– Abbreviation	expansion
– Stop	words	removal
– Stemming

PR
EP

RO
CE

SS
IN

G

Extracting	Domain	Concepts

– Sentence	templates	based	on	constraints	
for	different	types	of	entities
– Example:	method	addPanelFielddefined	
in	class	MergeGui generates	sentence:

“Subjects	add	panel	field”TE
CH

N
IQ

U
E

Rule idClass identifier Generated sentence Constraint
CR1 C = hT1i T1 “is a thing” T1 is a noun
CR2 C = hT1i T1er “is a thing” T1 is a verb
CR3 C = hT1, T2, . . .i T1T2 . . . “is a thing” T1 is a noun
CR4 C = hT1, T2, . . .i T1ing T2 . . . “is a thing”T1 is a verb

Rule idMethod identifier Generated sentence Constraint
MR1 M = hT1i “subjects” T1 “object” T1 is a verb
MR2 M = hT1i “subjects get” T1 T1 is a noun
MR3 M = hT1, T2, . . .i “subjects” T1T2 . . . T1 is a verb
MR4 M = hT1, T2, . . .i “subjects get” T1T2 . . . T1 is a noun

Rule idAttribute identifierGenerated sentence Constraint
AR1 A = hT1i T1 “is a thing” T1 is a noun
AR2 A = hT1i T1er “is a thing” T1 is not a past

tense verb, or
T1 is a past tense
verb and A is not
of Boolean type

AR3 A = hT1i T1 “subjects are things” T1 is a past tense
verb and A has a
Boolean type

AR4 A = hT1, T2, . . .i T1T2 . . . “is a thing” T1 is a noun
AR5 A = hT1, T2, . . .i T1ing T2 . . . “is a thing” T1 is a verb

TABLE I
RULES TO GENERATE SENTENCES FROM TERM LISTS

of the candidate sentences. Minipar can be used for this
purpose. Once parse trees are available, we apply the following
selection criteria in the following order:
a. If only one of the parsed sentences have a U in the result,

select the one without U. When Minipar is not able to
identify a term in a sentence, U(Unknown) is reported.

b. If both sentences do not have a U and the source of the
terms is a method, the method name is checked against the
attributes of the enclosing class. If a match is found, the
sentence with the verb get is selected.

c. If both sentences do not have a U, select a sentence based
on the frequency of the role of the first term of the list (e.g.,
verb and noun) in the sentence. The highest frequency role
is selected, with the frequency of each role obtained from
WordNet.

d. If both sentences do not have a U, the sentence with
user defined higher priority is selected. If the sentence
was generated for a method, the verb role is given higher
priority. Otherwise, the noun role is preferred.

e. If both sentences have a U, apply selection criterion d.
For example, method read from the running example gen-

erates two candidate sentences: S1 = “subjects read object”
and S2 = “subjects get read”. These two sentences are parsed
correctly (with no U in the parse tree). The term read does not
appear in the class attribute names. According to WordNet, the
frequency of use of the term read as a verb is much higher
than the frequency of the noun. Hence, based on criterion 3
S1 is selected for further analysis.

4. Extracting concepts and relations: The concepts which
are used in building the ontology are derived from the nouns in
the term lists. The ontological relations are obtained by map-
ping the linguistic relations in the dependency tree produced
by Minipar to ontological relations. The linguistic relations
of interest are obj which is a natural language dependency

Fig. 2. Mapping for relations obj and NN in “subjects add panel field”

relationship between a verb and a noun that plays the role
of object, and NN and mod which are natural language
dependency relationships between nouns or adjectives and
nouns.

The target ontological relations and the corresponding nat-
ural language dependency relations to which they are mapped
are described below.

• isA: used to connect general and more specific concepts.
It is derived from NN and mod linguistic relations.

• <verb>: a context specific relation between a concept
and the object on which the verb acts. The type of relation
identified between the concept and the object is taken
from the term that plays the role of a verb which, in this
case, is a non-accessor verb. The linguistic relation, which
corresponds to it, is obj. If the list of terms contains only
one verb, the <verb> relation is between the program
and class name. While, when the list contains a verb and
an object, the relation is between the class name and the
object.

• hasProperty: is a relationship between a concept and its
properties. It is derived from the linguistic dependency
relation obj between an accessor verb and an object.

In the sentence “subjects add panel field” constructed from
our running example (Figure 1), two concepts, panel field
and field, are generated and the NN natural language relation
between panel and field is mapped to an isA relation in the
ontology, originating isA(Panel field, Field) (see Figure 2).
The object in the sentence is associated with the concept
Panel field. The enclosing class for the method addPanelField
is associated with the concept Merge gui. Hence, a context-
specific relation add(Merge gui, Panel field) is created in the
extracted ontology.

III. CASE STUDY

To assess the support our approach provides to program-
mers, we have conducted a case study in the context of
concept1 location. In this regard, we have formulated two
research questions:

RQ1: Do the extracted ontology concepts contribute to increas-
ing the precision of programmer’s queries formulated for
concept location?

1Ontology concepts should not be confused with programmers’ concepts
to be located in the code. We qualify the first term as ontology concept to
disambiguate when necessary.

Extracting	Domain	Concepts
– Filter	the	ontology	using	terms	based	on:
• Keywords
• LDA

TE
CH

N
IQ

U
E

Extracting	Domain	Concepts

– Precision	of	the	POS	tagging
–Number	of	connected	components
– Case	study:	navigating	the	concepts	for	query	
reformulation	in	the	context	of	bug	location
– Precision	and	recall	of	the	extracted	domain	
concepts	compared	to	a	gold	set	
–Qualitative	analysis

EV
A
LU

A
TI
O
N

Extracting	Domain	Concepts

– POS	tagging:	
•Minipar
•WordNet

–Grammatical	relations:	
•Minipar
• TreeTagger

– Topic	modeling:	Dragon	Toolkit

TO
O
LS

	U
SE

D

Identifying	Semantically	Related	Words

• Task:	Identifying	pairs	of	words	that	are	
semantically	related,	e.g.,	same	or	opposite	
meaning

• Examples:
– call	- invoke
– size	- capacity
– serialize	- deserialize
– header	- trailer
– makeFullMap - makeEmptyMap

SU
BT

A
SK

Identifying	Semantically	Related	Words

– Project	description	and	tags	extracted	from	a	
hosting	site
– Source	code

IN
PU

T

Identifying	Semantically	Related	Words

– Similar	words
– Ranked	list	of	similar	tags

O
U
TP

U
T

Identifying	Semantically	Related	Words

– Splitting
– Tokenization
– Stop	words	removal
– Stemming

PR
EP

RO
CE

SS
IN

G

Identifying	Semantically	Related	Words

– Similarity	between	terms	(VSM	with	tf-idf)

– Cluster	tags	using	the	similarity	between	
terms	to	build	a	hierarchical	taxonomy	TE

CH
N
IQ

U
E

II. PRELIMINARIES

In this section, we describe preliminary information on
software tagging, and the k-medoids clustering algorithm.

A. Tagging Software Engineering Data

Many project hosting sites, such as Freecode2, allow
developers to tag projects. On Freecode, information about
more than one hundred thousands of applications is pro-
vided. Each application has the link for download, the
description of the application, and tags indicating various
features of the application. Sample project information from
Freecode is shown in Figure 1. One can note that the Java
Apple Computer Emulator is tagged with Major, Bug fixes,
new features, LGPL, and computer emulator.

Figure 1. Project Information in Freecode

Users could create a Freecode account and provide in-
formation for an application. Freecode may be viewed as a
Wiki-like platform for developers to share information about
various applications. Such information provides a good
knowledge base for us to infer semantically related software
terms. In this study, we use the application descriptions and
tags in Freecode for our purpose.

B. K-Medoids Clustering Algorithm

This algorithm splits a set of data points to a pre-set
number (k) of groups (or clusters) so that the square error
is minimized [10]. It is partitional, i.e., each data point is
assigned to one and only one cluster. The algorithm requires
a similarity metric between data points, and it performs
many iterations as follows to decide the best way to split:

1) Randomly pick k points as cluster centers (medoids).
2) Assign each remaining data point (non-medoids) to the

cluster whose medoid is closest. This would form a
configuration (i.e., the initial k clusters).

3) Update the medoid for each cluster: choose the point
in the cluster that has the minimum total distance to all
other points as the new medoid.

4) Repeat steps 2-3 until no more change to the medoids.

III. PROPOSED APPROACH

Our approach mainly consists of two steps. First, we
calculate the similarity between every pair of terms. To this
end, we propose a similarity metric based on the documents
that are tagged by the terms. Second, based on the similarity
metric, we infer a taxonomy of the terms by repeatedly
applying k-medoids clustering on the terms.

2http://freecode.com/

A. Calculation of Similarity Among Terms

Inspired by information retrieval techniques, we use the
documents tagged by the terms to measure the similarity
between terms (i.e., tags). In our setting, each document is
a description of an application (cf. Figure 1). Two terms
can be similar if they tag many common documents. We
call this similarity the document similarity of two terms. In
addition, we measure the similarity of two terms based on
the textual contents of the documents tagged by them. We
call this similarity the textual similarity of two terms.

Let Doc(t) be the set of documents that are tagged with
term t. We define the document similarity of two terms t1
and t2 as dsim(t1, t2) =

Doc(t1)
⋂

Doc(t2)
Doc(t1)

⋃

Doc(t2)
.

For textual similarity, we calculate it as the cosine simi-
larity between the vectors representing the term frequencies
& inverse document frequencies of the words appearing
in the documents tagged by the terms as follows. First,
for each term t, we apply standard text pre-processing
techniques to Doc(t) to remove common stop words, such
as I, you, etc., and reduce words into their root forms
by stemming (e.g., both reading and reads are reduced to
read). The preprocessed set of documents is referred to as
DocP (t). Second, a vector, referred to as V (t), is created:
each element V (t)[w] in V (t) corresponds to one word w

appearing in DocP (t) together with its TF-IDF score (term
frequency & inverse document frequency) [13]. Third, given
two terms t1 and t2 and their word vectors V (t1) and V (t2),
the textual similarity between t1 and t2 is calculated as the
cosine similarity between V (t1) and V (t2):

tsim(t1, t2) =

∑

w∈V (t1)
⋂

V (t2) V (t1)[w] × V (t2)[w]
√

∑

w∈V (t1) V (t1)[w]2 ×
√

∑

w∈V (t2) V (t2)[w]2

Finally, we combine document and textual similarities to
derive the similarity score of terms t1 and t2. It is a weighted
sum of both similarities, where we use 0.5 for w1 and w2:

sim(t1, t2) = w1 × dsim(t1, t2) + w2 × tsim(t1, t2) (1)

B. Taxonomy Inference

We infer the taxonomy of software terms by performing
repeated k-medoids clustering. At each application of k-
medoids, we divide the set of terms into smaller groups.
Each of these groups can then be divided into even small-
er subgroups by applying k-medoids clustering again. K-
medoids clustering requires a similarity metric between two
data points (a data point is a term in our setting). This paper
uses the similarity metric presented in Equation (1).

The pseudocode of the approach is given in Algorithm 1.
The procedure CreateTaxonomy first initializes a dummy
root node by setting its label as “root”; it then recursively
applies k-medoids clustering at various levels in the taxono-
my by calling CreateLevels. We stop dividing a cluster
further if its size is less than minSize. In our evaluation,
we use minSize = 20 and k = 7.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

605

Identifying	Semantically	Related	Words

– High	similarity	between	pairs	of	sentences	
containing	at	least	one	common	word

"None mounted file for this track.”

"None accessible file for this track.”

“If you do not have apr_pool_clear
in a wrapper”

“If you do not have apr_pool_destroy
in a wrapper”.

TE
CH

N
IQ

U
E

Identifying	Semantically	Related	Words

– Frequency	of	comment-code	word	pairs	of	
main	action	verbs	for	methods

/** Searches an attribute.*/
XMLAttribute findAttribute(…){…}

/** Cancels the current HTTP request.*/

void jsxFunction abort(){…}

TE
CH

N
IQ

U
E

Identifying	Semantically	Related	Words

– Precision	of	the	identified	pairs	of	words
–User	study	evaluating	a	subset	of	the	
identified	pairs	on	a	Likert	scale.
– Sensitivity	evaluation	for	thresholds	(precision	
and	recall)

EV
A
LU

A
TI
O
N

Identifying	Semantically	Related	Words

– Stanford’s	POS	Tagger	for	comments
– Custom	POS	Tagger	for	method	names
– WordNet

TO
O
LS

	U
SE

D

Generating	Documentation	Automatically

✓Extracting	a	set	of	important	keywords
✓Generating	natural	language	sentences

TA
SK

Extracting	a	Set	of	Important	Keywords
• Task:	Identify	the	keywords	that	best	
represent	a	software	artifact

• Example:	{“match”,	“text”,	“ignorecase"}

SU
BT

A
SK

5.5 Summary of the Eye-Tracking Results
We derive two main interpretations of our eye-tracking

study results. First, the VSM tf/idf approach roughly ap-
proximates the list of keywords that programmers read dur-
ing summarization, with about half of the top 10 keywords
from VSM matching those most-read by programmers. Sec-
ond, programmers prioritize method signatures above in-
vocation keywords, and invocation keywords above control
flow keywords. We base our interpretation on the finding
that signature keywords were read more than other key-
words, invocations were read about the same, and control
flow keywords were read less than other keywords. In ad-
dition, the adjusted gaze time for method signatures (H1)
averaged 1.784, versus 1.069 for invocations (H7) and 0.924
for control flow (H4). An adjusted value of 1.0 for an area of
code means that the programmers read that area’s keywords
in a proportion equal to the proportion of keywords in the
method that were in that area. In our study, the adjusted
gaze times were greater than 1.0 for signatures and invoca-
tions, but not for control flow keywords. Our conclusion is
that the programmers needed the control flow keywords less
for summarization than the invocations, and the invocations
less than the signature keywords.

6. OUR APPROACH
In this section, we describe our approach for extracting

keywords for summarization. Generally speaking, we im-
prove the VSM tf/idf approach we studied in RQ1 using the
eye-tracking results from answering RQ2, RQ3, and RQ4.

6.1 Key Idea
The key idea behind our approach is to modify the weights

we assign to di↵erent keywords, based on how programmers
read those keywords. In the VSM tf/idf approach, all oc-
currences of terms are treated equally: the term frequency
is the count of the number of occurrences of that term in a
method (see Section 3.4). In our approach, we weight the
terms based on where they occur. Specifically, in light of our
eye-tracking results, we weight keywords di↵erently if they
occur in method signatures, control flow, or invocations.

6.2 Extracting Keywords
Table 2 shows four di↵erent sets of weights. Each set cor-

responds to di↵erent counts for keywords from each code
area. For the default VSM approach [26], denoted VSM

def

,
all occurrences of terms are weighted equally. In one con-
figuration of our approach, labeled Eye

A

, keywords from
the signature are counted as 1.8 occurrences, a keyword is
counted as 1.1 if is occurs in the a method invocation, and
0.9 if in a control flow statement (if a keyword occurrence
is in both a control flow and invocation area, we count it as
in control flow). These weights correspond to the di↵erent
weights we found for these areas in the eye-tracking study
(see Section 5.5). Eye

B

and Eye
C

work similarly, except
with progressively magnified di↵erences in the weights
These changes in the weights mean that keywords appear-

ing in certain code areas are inflated, allowing those key-
words to be weighted higher than other keywords with the
same number of occurrences, but in less important areas.
After creating the vector space for these methods and key-
words, we score each method’s keywords using tf/idf, where
term frequency of each term is defined by its own weighted
score, rather than the raw number of occurrences.

Table 2: The weight given to terms based on the
area of code where the term occurs.

Code Area VSM
def

Eye
A

Eye
B

Eye
C

Method Signature 1.0 1.8 2.6 4.2
Method Invocation 1.0 1.1 1.2 1.4

Control Flow 1.0 0.9 0.8 0.6
All Other Areas 1.0 1.0 1.0 1.0

6.3 Example
In this section, we give an example of the keywords that

our approach and the default VSM tf/idf approach generate
using the source code in Figure 3. In this example, where
VSM tf/idf increments each weight a fixed amount of each
occurence of a term, we increment by our modified weights
depending on contextual information. Consider the keyword
list below:

Keywords Extracted by Default VSM Approach

“textarray, text, match, o↵set, touppercase”

The term “textArray” occurs in 2 of 6902 di↵erent meth-
ods in the project. But it occurs twice in the region-

Matches(), and therefore the default VSM tf/idf approach
places it at the top of the list. Likewise, “text” occurs in 125
di↵erent methods, but four times in this method. But other
keywords, such as “ignoreCase”, which occurs in the signa-
ture and control flow areas, may provide better clues about
the method than general terms such as “text”, even though
the general terms appear often. Consider the list below:

Keywords Extracted by Our Approach

“match, regionmatches, text, ignorecase, o↵set”

The term“match” is ranked at the top of the list in our ap-
proach, moving from position three in the default approach.
Two keywords, “regionMatches” and “ignoreCase”, that ap-
pear in our list do not appear in the list from the default
approach. By contrast, the previous approach favors “toUp-
perCase”over“ignoreCase”because“toUpperCase”occurs in
22 methods, even though both occur twice in this method.
These di↵erences are important because it allows our ap-
proach to return terms which programmers are likely to read
(according to our eye-tracking study), even if those terms
may occur slightly more often across all methods.

public static boolean regionMatches(boolean ignoreCase,

Segment text, int offset, char[] match) {

int length = offset + match.length;

if(length > text.offset + text.count)

return false;

char[] textArray = text.array;

for(int i = offset, j = 0; i < length; i++, j++)

{

char c1 = textArray[i];

char c2 = match[j];

if(ignoreCase)

{

c1 = Character.toUpperCase(c1);

c2 = Character.toUpperCase(c2);

}

if(c1 != c2)

return false;

}

return true;

}

Figure 3: Source Code for Example.

395

Extracting	a	Set	of	Important	Keywords

– Source	code
– Execution	traces

IN
PU

T

Extracting	a	Set	of	Important	Keywords

– Sets	of	keywords	that	best	represent	each	
• Class
•Method
• Execution	trace	segment

O
U
TP

U
T

Extracting	a	Set	of	Important	Keywords

– Splitting	
– Tokenization
– Stop	words	removal
– Stemming

PR
EP

RO
CE

SS
IN

G

Extracting	a	Set	of	Important	Keywords

– Compare	IR-techniques
– Eye-tracking	experiment	to	decide	on	the	
importance	of	terms
– IR-techniques:	VSM,	LSI,	LDA
–Weighting	schemes:	tf,	tf-idf,	log,	and	binaryTE

CH
N
IQ

U
E

Extracting	a	Set	of	Important	Keywords

– Developers	assessing	the	quality	of	the	
summaries
– Comparison	with	manually	summarized	
artifacts

EV
A
LU

A
TI
O
N

Generating	Natural	Language	Sentences

• Task:	Generating	natural	language	sentences	
summarizing	a	software	artifact.

• Examples
–Method	summary:	“Export	plan	component	to	svg.”
– Class	summary:	“An	AbstractPlayer	extension	for	m	
player	handlers.	This	entity	class	consists	mostly	of	
mutators	to	the	m	player	handler's	state.	…”

– Release	note:	“New	class	SearcherLifetimeManager	
implementing	Closeable.	…”

SU
BT

A
SK

Generating	Natural	Language	Sentences

– Project	source	code
– Set	of	releases
– Issue	tracker
– Version	control	repository

IN
PU

T

Generating	Natural	Language	Sentences

–Natural	language	sentences	representing	
• method	comments
• class	comments
• release	notes
• commit	notesO

U
TP

U
T

Generating	Natural	Language	Sentences

– Splitting	
– Tokenization
– Abbreviation	expansion

PR
EP

RO
CE

SS
IN

G

Generating	Natural	Language	Sentences

–Method	summaries
• Statement	selection	
–Ending	statements
–Statement	with	a	method	call	with	the	
same	action
–Conditional	expressions
–…

TE
CH

N
IQ

U
E

Generating	Natural	Language	Sentences

–Method	summaries	(cont.)
• Sentence	templates
–E.g.,	method	call	template

TE
CH

N
IQ

U
E

os.print(msg)

/* Print message to output stream */

action	theme	secondary-args
and	get	return-type	[if	M	returns	a	value]	

action theme secondary-args

Generating	Natural	Language	Sentences

– Class	summaries	based	on	class	and	method	
stereotypes
• Text	generation
–General	description
–Stereotype	description
–Behavior	description
–Inner	classes	enumeration

TE
CH

N
IQ

U
E

Generating	Natural	Language	Sentences

– Class	summaries	based	on	class	and	method	
stereotypes

TE
CH

N
IQ

U
EGenerated text: It provides access to:

- audio files list.

Otherwise, we remove the verb and secondary arguments
from the phrase generated for the method to get the property
that is being accessed; then, it is concatenated to the lexicalized
form of the field that provides such property. For example:

Method signature: int getTrackNumber()
Stereotype: Property
Field accessed: Tag tag
Generated text: It provides access to:

- Track number from tag.

On the other hand, the only modification to the mutator
methods is the removal of the verb from the phrase generated
from its signature. In that way, we add only the fragment that
indicates the property which is being modified by the method.
For example:

Method signature: void setContext(Context c)
Stereotype Set
Generated text: It allows managing:

- context.

One exception to this rule occurs when the method name
consists of one verb only. Since the signature of the method
does not provide the properties that are being modified, we
move such methods in the third block and use the name of the
class as the theme in the generated phrase. The final
adjustment in this block is the transformation of the action of
the methods into its gerund form. For example:

Class declaration: public class CdRipper
Method signature: void stop()
Stereotype Command (mutator method)
Generated text: It also allows:

- stopping cd ripper.
Class: public class RepositoryHandler…
Method signature: void refreshRepository()
Stereotype Collaborator
Generated text: It also allows:

- refreshing repository.

Note that we do not use the fields that are being modified
by the mutator methods in the summary. After analyzing
several methods in different systems, we found that
modifications of the fields are better reflected by the signature
of the methods.

 Inner Classes Enumeration 4)
The last part of the summary is optional. It is only used

when the class declares inner classes. In such cases, the
following template is used:

It declares the helper classes <inner class1>, …,
and <inner classn>.

The final summary is created by concatenating the four
parts described above. Fig. 1. shows a complete summary
generated for the MPlayerHandler class from aTunes, which
consists of six fields and 23 methods. Nine of these methods
are classified as mutators and one as accessor. The rest of
them are spread in the creational, collaborational, and

degenerate categories. According to the stereotype
identification rules, this class is a Commander.

III. EVALUATION
The goal of the automatic summary of a class is to provide

developers with a quick overview of its main responsibility,
which can be easily read. Accordingly, we performed a study
involving potential users, in a manner similar to previous work
[4], in order to evaluate the following properties of the
generated summaries:

x Content adequacy: Is the important information about
the class reflected in the summary?

x Conciseness: Is there extraneous information included
in the summary?

x Expressiveness: How readable and understandable is
the summary?

For this study we asked 22 programmers to judge the
content adequacy, conciseness, and expressiveness of
automatically generated summaries for 40 Java classes.

A. Subjects and Objects of the Study
The study included 22 graduate students in computer

science: 11 from the University of Delaware, 5 from Wayne
State University, and 6 from Universidad Nacional de
Colombia. We surveyed their programming knowledge and
background. All of them reported good or very good

An AbstractPlayer extension for m player
handlers. This entity class consists mostly
of mutators to the m player handler's state.

It allows managing:
- mute;
- volume; and
- next with no gap.
It also allows:

- finishing m player handler;
- handling next;
- playing audio file f;
- stopping m player handler;
- playing m player handler; and
- handling previous.

Fig. 1. Fragment of the class MPlayerHandler from the aTunes system

and its automatically generated summary

27

Generating	Natural	Language	Sentences
– Release	notes	by	organizing	changes	hierarchically	and	by	
using	sentence	templates

• Identifying	and	prioritizing	code	changes	from	the	
versioning	systems

– Files	added,	removed,	moved

– Classes	added,	removed,	renamed,	moved

– Methods	changed	(signature,	visibility,	source	code,	or	
set	of	thrown	exceptions)

– …

TE
CH

N
IQ

U
E

Generating	Natural	Language	Sentences
– Release	notes	by	organizing	changes	
hierarchically	and	by	using	sentence	templates
• Sentence	templates
–Deleted	file:	“File	<file	name>	has	been	
removed.”
–Added	class:	class	summaries	
(JSummarizer)

TE
CH

N
IQ

U
E

Generating	Natural	Language	Sentences
– Release	notes	by	organizing	changes	hierarchically	
and	by	using	sentence	templates

• Other	changes	considered

– Licensing

– Documentation

– Libraries

– Refactorings

– Issues

TE
CH

N
IQ

U
E

Generating	natural	language	sentences
– Release	notes	by	organizing	changes	
hierarchically	and	by	using	sentence	templates
• Example

TE
CH

N
IQ

U
E

Generating	Natural	Language	Sentences

• Developers
– Accuracy
– Content	Adequacy
– Conciseness
– Importance
– In-field	study

EV
A
LU

A
TI
O
N

Generating	Natural	Language	Sentences

• Tools	used:	
– Software	Word	Usage	Model	(SWUM)
– JSummarizer	for	generating	class	summaries

SU
BT

A
SK

Outline
• Introduction

• Background	on	IR	and	NLP

• SE	tasks using IR	and	NLP

• Hands-on

Tools	to	install
• srcML:	for	transforming	source	code	to	xml:	
http://www.srcml.org/downloads.html

• XOM:	for	parsing	xml	files	and	querying	them	with	
XPath:	http://www.xom.nu/

• WordNet:	for	extracting	semantic	relations:	
http://wordnet.princeton.edu/wordnet/download/cu
rrent-version/

• JWNL,	Java	API	for	WordNet:	
https://sourceforge.net/projects/jwordnet/files/jwnl/J
WNL%201.4/jwnl14-rc2.zip/download

• Stanford	CoreNLP for	grammatical	analysis:	
http://stanfordnlp.github.io/CoreNLP/download.html

Preparations

• Download	the	source	code:	
http://www.veneraarnaoudova.ca/wp-
content/uploads/2016/07/SaTToSE_16-TR_NLP.zip

• Change	ProjectConfiguration
• Parse	source	code	with	SrcML
• Run	SaTToSETest

TODOs

• Extract	name	and	preceding	comment	of	
attributes	and	methods

• Find	antonyms	in	the	name	and	comments	of	
an	attribute

• Check	if	method	names	start	with	a	verb	

More	TODOs
• XPath:	Fix	
getPreceedingCommentsForAttribute to	
collect	only	the	comments	for	the	attribute	that	
is	passed	as	parameter.

• Preprocessing:	remove	stopwords before	
querying	WordNet	for	semantic	relations

• WordNet:	change	startsWithVerb to	use	
WordNet	in	addition	to	POS	tagging	to	reduce	
false	negatives

• Stanford	CoreNLP:	extract	negation	relations	and	
incorporate	them	in	the	antonym	detection

