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Textual Information in Software

e Captures concepts of the problem domain, developer
intentions, developer communication, etc.

* Found in many software artifacts:
— Requirements
— Design documents
— Source code (identifiers, comments)
— Commit notes
— Documentation
— User manuals
— Q/A websites
— Developer communication: emails, chat, tweets
— Etc.



Text Retrieval

* Information Retrieval (IR): the process of actively
seeking out information relevant to a topic of
Interest (van Rijsbergen)

* Text Retrieval (TR): a branch of IR where the
information is stored in text format

— Typically it refers to the automatic retrieval of
documents

— Document - generic term for an information holder
(book, chapter, article, webpage, class body, method,
requirement page, etc.)



Natural Language Processing

* Refers to the use and ability of systems to
process sentences in a natural language such
as English (rather than in a specialized
artificial computer language such as C++)

 Combines techniques from of computer
science, artificial intelligence, and
computational linguistics, probability and
statistics
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TR and NLP in Software Engineering

Applied to over 30 different SE tasks

Traceability Link Recovery o Requirements analysis
Feature/concept/concern/bug location o Restructuring/refactoring
Code reuse o Software categorization
Bug triage o Licensing analysis

Program comprehension o Impact analysis
Architecture/design recovery o Clone detection

Quality assessment and measurement o Effort prediction/estimation
Software evolution analysis o Domain analysis

Defect prediction and debugging o Web services discovery
Automatic documentation o Use case analysis

Testing o Team management, etc.
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What is Text Retrieval?

Basis for internet search engines

Search space is a collection of documents (“bags
of words”)

Search engine creates a cache consisting of
indexes of each document — different techniques

create different indexes
No predefined grammar and vocabulary

Many TR models are not intuitive for humans ->
will not understand well the results of TR
approaches




Terminology

Document = unit of information — bag of words
Corpus = collection of documents

Term vs. word — basic unit of text - not all terms
are words

Query
ndex

Rank
Relevance




Document Granularity

e What is a document in source code?

— Depends on the problem and programming
anguage

— Class, method, function, interface, procedure, etc.

e What is a document in other artifacts?
— Depends on the artifact and problem

— Individual requirements, bug descriptions, test
cases, e-mails, design diagrams, etc.




Most Popular Models Used in SE

Vector Space Model (VSM)
Latent Semantic Indexing (LSI)
Okapi BM25 and BM25F

Latent Dirichlet Allocation (LDA)

Probabilistic LSI (pLSl)



Term Weights and Document
Similarities in VSM

 Term weight = Local weight * Global weight

Local weights: Global weights:
* binary * binary

o tf e idf

* Jlog (tf) * entropy

* Most common weight: tf-idf

 Doc Similarities: Cosine, Dice, Jaccard
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A Typical TR Application

Build corpus
Index corpus — choose the IR model

Formulate a query (Q)
— Manual or automatic

Compute similarities between Q and the
documents in the corpus (i.e., relevance)

Rank the documents based on the similarities
Return the top N as the result list

nspect the results

GO TO 3. if needed or STOP




Using TR in SE — Option 1

 Formulate the SE problem as a text retrieval
problem

e Convert the software artifacts into a text
corpus

* Choose the TR model best suited to the
problem



SE as TR

Concept/concern/feature location in software
Traceability link recovery between software artifacts
Impact analysis

Software reuse

Bug triage

Requirements analysis

Etc.



Using TR in SE — Option 2

Analysis of the textual information in software

Convert the software artifacts into a text
corpus

Choose the TR model best suited to the
problem

Compute similarities between documents

Perform analysis based on these measures



SE as Text Analysis

Software categorization
Refactoring and restructuring
Reverse engineering

Bug triage

Clone detection
Requirements analysis
Defect prediction

Change impact analysis

Etc.
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Natural Language Processing (NLP)

« Text is not only a bag of words..

{‘a’, ‘’chasing’, ‘cat’, ’ fish’, ’is’, ‘the’}

“a cat is chasing the fish” # “a fish is chasing the cat”



NLP Techniques

Language Models (LM)
Syntactic analysis
Semantic analysis
Sentiment analysis

Emotion analysis



Language Models (LM)

* Assign probabilities for sequences of words

7 (L /(]

Corpus: “l am smiling”, “You are happy”, “We are happy”
“lam” happy? -> P(happy|lam)?

uni-gram: ~ P(happy) .... happy
bi-gram: ~ P(happy|am) .... am happy
tri-gram: ~ P(happy|l am) .... | am happy

n-gram



Syntactic Analysis

» Tagging words with their VB: verb
respective Part-Of-Speech  JJ:adjective
(POS) NN: noun

VB] (1J] [NN

get full name



Syntactic Analysis

» Tagging words with their VB: verb
respective Part-Of-Speech ~ JJ: adjective
(POS) NN: noun

e Chunking NP: noun phrase

VP: verb phrase
VB] (] (NN

get full name



Syntactic Analysis

 |dentifying grammatical relations between words

dobj
4-amod
VB /JI ) NN amod: adjectival modifier

get full name dobj: direct object




Semantic Analysis

 |dentifying semantic relations between words

visible

t Wnym of
antonym of

seeable

hidden



Semantic Analysis

 |dentifying semantic relations between words

visible

t Wnym of
antonym of length

hidden

seeable
hyponym of

size



Semantic Analysis

 |dentifying semantic relations between words

visible

t Wnym of

antonym of length
seeable
h f
hidden yponym o
size

distance » altitude

hypernym of



Sentiment Analysis

 Classify the polarity of a text

+3 -1 -4
“I love this movie but | really hate the main actor.”
} i N\
positive booster negative

Positive sentiment strength: 3

Negative sentiment strength: -5



Emotion Analysis

Joy: “That’s great work guys!”

Anger: “1 will come over to your work and slap
you!”

Sadness: “Sorry for the late response.”



Parrott's Framework

Primary Secondary Tertiary

emotions | emotions emotions
Affection Compassion, Sentimentality, Liking, Caring, ...

love Lust/Sexual desire | Desire, Passion, Infatuation
Longing
Cheerfulness Amusement, Enjoyment, Happiness, Satisfaction, ...
Zest Enthusiasm, Zeal, Excitement, Thrill,. Exhilaration
Contentment Pleasure
Joy Pride Triumph

Optimism Eagerness, Hope
Pride Triumph
Enthrallment Enthrallment, Rapture

Surprise Surprise Amazement, Astonishment
Irritability Aggravation, Agitation, Annoyance, Grumpy, . ..
Exasperation Frustration

Anger Rage Outrage, Fury, Hostility, Bitter, Hatred, Dislike, ...

Disgust Revulsion, Contempt, Loathing
Envy Jealousy
Torment Torment
Suffering Agony, Anguish, Hurt
Sadness Depression, Despair, Unhappy, Grief, Melancholy, ...
Disappointment Dismay, Displeasure

neEs Shame Guilt, Regret, Remorse
Neglect Embarrassment, Humiliation, Insecurity, Insult, ...
Sympathy Pity, Sympathy

Fear Horror Alarm, Shock, Fright, Horror, Panic, Hysteria, ...

Nervousness Suspense, Uneasiness, Worry, Distress, Dread, ...



Creating a Corpus of a
Software System

Parsing software artifacts and extracting documents
— corpus — collection of documents (e.g., methods)

Text normalization (white space and non-textual tokens
removal, tokenization)

Splitting: split_identifiers and Splitldentifiers

Stop words removal

— common words in English, standard function library names,
programming language keywords

Stemming

-> Software Lexicon



Parsing Source Code
and Extracting Documents

Documents can be at different granularities (e.g.,
methods, classes, files)
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Parsing Source Code
and Extracting Documents

Documents can be at different granularities (e.g.,
methods, classes, files)
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Source Code is Text Too

public void run(IProgressMonitor monitor)
throws InvocationTargetException,
InterruptedException{

if ( m_iFlag == 0 )
processCorpus (monitor, checkUpdate() )

else if ( m _iFlag == 2 )
processCorpus (monitor, UD UPDATECORPUS) ;

else
processQuery3tring (monitor) ;

if (monitor.isCanceled())
throw new InterruptedException("The long running

public void run IProgressMonitor monitor throws
InvocationTargetException InterruptedException if m_iFlag
processCorpus monitor checkUpdate else if m 1Flag
processCorpus monitor UD UPDATECORPUS else
processQueryString monitor if monitor isCancelled throw
new InterruptedException the long running



Text Normalization

* Break up the text in words or “tokens”
* Question: “what is a word” ?

* Problem cases

— Numbers: “M16”, “2001”

— Hyphenation: “MS-DOS”, “0S/2”

— Punctuation: “John’s”, “command.com”
— Case: “us”, “US”

— Phrases: “venetian blind”



Splitting

 Splitting: decomposing identifiers into their
compound words

* |dentifiers may use of division markers (e.g.,
camelCase and )

* Examples:
— getName -> ‘get’, ‘Name’
— getMAXstring -> ‘get’, ‘MAX’, ‘string’
— ASTNode -> ‘AST’, ‘Node’
— account_ number -> ‘account’, ‘number’

— simpletypename -> ‘simple’, ‘type’, ‘name’



Stop Words

* Very frequent words, with no power of
discrimination (e.g., language keywords)

* Typically function words, not indicative of
content

* The stop words set depends on the document
collection and on the application (e.g.,
language keywords)



Stemming

* |dentify morphological variants, creating “classes”
— system, systems
— forget, forgetting, forgetful
— analyse, analysis, analytical, analysing

* Replace each term by the class representative
(root or most common variant)



Abbreviations expansion

* Expand abbreviations to the corresponding full
word

* Single versus multi-word abbreviations

* Examples:
— mess -> ‘message’
— src -> ‘source’
— regex -> ‘regular expression’
— ASCIT -> ‘American Standard Code for Information Interchange’

— auth -> ‘authenticate’ OR ‘author’



Improving the Quality of the Code Lexicon

v ldentifying poor quality identifiers

v ldentifying naming inconsistencies




Identifying Poor Quality Identifiers

» Task: Identifying identifiers that are difficult to
understand, unclear, meaningless, etc.

* Examples:

e a5z
e foo
e Varia

e Varia

es path and absolutePath
esfileoftypeFileand String



Identifying Poor Quality Identifiers

Source code

Mapping between program identifiers and
domain concepts

Standard lexicon dictionary (a dictionary of
allowed terms)

Synonym/abbreviation dictionary



Identifying Poor Quality Identifiers

 |dentifiers with poor quality

—
>
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« Suggestions to improve the identifiers




Identifying Poor Quality Identifiers

* Splitting

O
Z
W
n
L
O
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o
o
L
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Identifying Poor Quality Identifiers

* Non-standard lexicon based on concepts

meaningless: foo

synonyms: aCopy and printReplica

L
>
=
=
I
O
L
—

abbreviations: aSz // a:array, Sz: size
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Identifying Poor Quality Identifiers

 Inconsistencies based on the concepts (cont.)

Homonym:

Synonym:

|dentifier space

file

Concept space

__~ file name

— file pointer

|dentifier space

Concept space

file ——— , file name

file name —

_




Identifying Poor Quality Identifiers

 Inconsistencies based on the concepts (cont.)

Conciseness

violation: file — file name
No hyponymy in Aﬁnima}(

a class hierarchy:

Monkey| |Violin




Identifying Poor Quality Identifiers

 Inconsistencies based on the concepts (cont.)
* |dentified using:
* identifiers to concept mapping

* identifier inclusion (syntactic conciseness and
consistency)

* ontology
e number of characters

 string similarity



Identifying Poor Quality Identifiers

» Syntactical standardization

class:

Compute // must be a noun

method: addition // mustbe averb

Functionld
Context
Qualifier
Action
SimpleAction
ComplexAction
IndirectAction
DirectAction
ActionSpecifier

[Context] (Action | PropertyCheck | Transformation)

Qualifier <noun>

(<adjective> | <noun>)*

SimpleAction | ComplexAction

DirectAction | IndirectAction

ActionOnObject | DoubleAction

Qualifier <noun> ActionSpecifier {Head word = <noun>}
<verb> ActionSpecifier {Head word = <verb>}
(<adjective> | <adverb> | <preposition> Qualifier <noun>)*



Identifying Poor Quality Identifiers

e Other types of measures

overloaded identifiers: saveAndPrint

spelling errors: Examlpe

useless type: String nameString

 |dentified using POS analysis, grammatical
relations, spell checker, identifier
containment



Identifying Poor Quality Identifiers

« Case study with quantitative and qualitative
analyses

Z
=
|_
<
>
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<
>
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* Precision of detected poor quality identifiers




Identifying Poor Quality Identifiers

« Semantic relations: WordNet or manual
* POS tagging:

* Minipar or manual

)
L
(Vg
>
g
—
O
O
—

e WordNet

* Spell checker: Jazzy




Identifying Naming Inconsistencies

Task: Identify entities where the name is inconsistent
with the type, functionality, or documentation.

Examples:

 method named 1isValid with return type void

 method named
isNavigateForwardEnabled documented
as backward navigation

« method named iterator whose
implementation is only creating and returning an
object



Identifying Naming Inconsistencies

* Project bytecode

 Source code




Identifying Naming Inconsistencies

* |nconsistencies

—
>
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—
>
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* Suggested solution




Identifying Naming Inconsistencies

» Splitting

O
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Identifying Naming Inconsistencies

* Contrast the name and type of an entity

opposite name and EnterTransport
type: exltTransport(..

set method returns: Dimension

setBreadth(..)

says many,
contains one:

boolean statistics



Identifying Naming Inconsistencies

* Contrast the name and comment of an entity

opposite name and comment:

// ... default exclude ...
String INCLUDE NAME DEFAULT

* Defined through a grounded theory approach

 |dentified using POS analysis, general
ontology, grammatical relations



Identifying Naming Inconsistencies

* Contrasting the name and implementation of
an entity

Semantic profile of an “iterator” method:

These methods often call other methods with the same name and
create objects. They never return void, write parameter values to fields
or call themselves recursively, and very rarely write to fields or return
parameter values, and rarely have parameters, contain loops, use local
variables, do runtime type-checking or casting, return field values, have
branches or have multiple return points.

public Iterator iterator() throws
DomainRegistryException{..}



Identifying Naming Inconsistencies

* Contrasting the name and implementation of
an entity (cont.)

public void isCaching(boolean value) {
this.caching = value; }

Name: is-<adjective>

Implementation: set-<adjective>:
returns void, writes field, parameter to field.

isCaching => setCaching



Identifying Naming Inconsistencies

* Contrasting the name and implementation of
an entity (cont.)

* Defined empirically

L
>
=
=
I
O
L
—

 |dentified using POS analysis




Identifying Naming Inconsistencies

e Detection precision

Z
=
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<
>
—
<
=
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« Developers’ perception




Identifying Naming Inconsistencies

« Semantic relations:
e WordNet

 POS tagging:

)
L
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e WordNet

« Stanford’s POS Tagger




Building Software Ontologies

v Domain ontology

v ldentifying semantically related words




Extracting Domain Concepts

» Task: automatically extracting domain concepts
and relations from source code

* Examples:

rt SErVer
- ® po ; haz property | ® = '
'. -
h ropert e
A 835 Property _
\ e
I @ 'mail sender l @ 'mail merger'
: ; start :
. ¥, |
is a3 I!r {;r

iz a

(@ sender |

& merger |




Extracting Domain Concepts

 Source code

 Documentation (e.g., user manuals, web
sites)




Extracting Domain Concepts

 Domain concepts and ontological relations

—
>
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Extracting Domain Concepts

* Splitting
« Abbreviation expansion

» Stop words removal

O
Z
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e Stemming




Extracting Domain Concepts

« Hypernym/hyponym relations using the
longest common prefix

Step Identifier 1 Identifier 2
updateSalomeConf updateProjectConf
Tokenization update, Salome, Conf update, Project, Conf
POS tagging (update,VV),(Salome,NN),(Conf,NN) | (update,VV),(Project,NN),(conf,NN)
Dependency sorting (update,VV),(conf,NN),(salome,NN) (update,VV),(conf,NN),(project,NN)
Lexical expansion (update,VV),(conf,NN)

hypo(updateSalomeConf,update Conf)

Lexical relations hypo(updateProjectConf.updateConf)

(update,VV)(Conf,NN)(Salome,NN) ) ((update,VV)(Conf,NN)(Project,NN)

Lexical view




Extracting Domain Concepts

* Sentence templates based on constraints for
different types of entities

 Example: method addpanelField defined in
class MergeGui generates sentence:

HSu

ojects add panel field”

Subj :

NN

obj

[ Field ]

isAT
||[||:> [ Panel field ]

/ add

[ Merge gui ]




Extracting Domain Concepts

* Filter the ontology using terms based on:
» keywords
* plLSI
« LDA

* A concept is considered as a domain concept
if all the terms in the concept name are
matched



Extracting Domain Concepts

Precision of the POS tagging
Number of connected components

Case study: navigating the concepts for query
reformulation in the context of bug location

Precision and recall of the extracted domain
concepts compared to a gold set

Qualitative analysis



Extracting Domain Concepts
 POS tagging:

 Minipar

* WordNet

e Grammatical relations:

)
L
(Vg
>
g
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 Minipar
 TreeTagger

* Topic modeling: Dragon Toolkit




Identifying Semantically Related Words

* Task: Identifying pairs of words that are semantically
related, e.g., same or opposite meaning
* Examples:
 call - invoke
* Size - capacity
 serialize - deserialize
* header - trailer

* makeFullMap - makeEmptyMap



Identifying Semantically Related Words

* Project description and tags extracted from a
hosting site

 Source code




Identifying Semantically Related Words

 Similar words

—
>
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« Ranked list of similar tags




Identifying Semantically Related Words

* Splitting

* Stop words removal

O
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e Stemming




Identifying Semantically Related Words

* S

imilarity between terms (VSM with tf-idf)

Sim(tl, tg) = w1 X dSi?TL(tl, tQ) —+ Wwo X tsim(tl, tz)

ierarchical taxonomy of tags using based on
ne similarity between terms using a

O o T

ustering algorithm



Identifying Semantically Related Words

* High similarity between pairs of sentences
containing at least one common word

"None mounted file for this track.”

"None accessible file for this track.”

“If you do not have apr pool clear
in a wrapper”

“If you do not have apr pool destroy
in a wrapper”.



Identifying Semantically Related Words

* High similarity between pairs of sentences
containing at least one common word (cont.)

Number of Common Words in the Two Sequences

Similarity M =
tmarity Measure Total Number of Words in the Shorter Sequence

* Thresholds are used to filter pairs of related
words

e Support measure: +1 when a pair is
discovered from different sentences

* Improved similarity using idf



Identifying Semantically Related Words

* Frequency of comment-code word pairs of
main action verbs for methods

/** Searches an attribute.*/
XMLAttribute findAttribute(..){..}

/** Cancels the current HTTP request.*/

void jsxFunction abort(){..}



Identifying Semantically Related Words

* Frequency of comment-code word pairs of
main action verbs for methods (cont.)

 Filter descriptive leading comments

 |dentify documented action from a leading
comment

* |dentify the main action from the name of
a method



Identifying Semantically Related Words

* Precision of the identified pairs of words

» User study evaluating a subset of the
identified pairs on a Likert scale.

« Sensitivity evaluation for thresholds
(precision and recall)



Identifying Semantically Related Words

« Stanford’s POS Tagger for comments

e Custom POS Tagger for method names

)
L
(Vg
>
g
—
O
O
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e WordNet




Generating Documentation Automatically

v Extracting a set of important keywords

v Generating natural language sentences




Extracting a Set of Important Keywords

» Task: Identify the keywords that best represent
a software artifact

« Example: {“match”, “text”, “ignorecase"}

public static boolean regionMatches(boolean ignoreCase,
Segment text, int offset, char[] match) {
int length = offset + match.length;
if (length > text.offset + text.count)
return false;
char[] textArray = text.array;
for(int i = offset, j = 0; i < length; i++, j++)

{
char cl1 = textArrayl[i];
char c2 = match[j];
if (ignoreCase)
{
cl = Character.toUpperCase(cl);
c2 = Character.toUpperCase(c2);
}
if(cl '= c2)
return false;
}

return true;



Extracting a Set of Important Keywords

 Source code

e Execution traces




Extracting a Set of Important Keywords

« Sets of keywords that best represent each

e Class
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« Method

« Execution trace segment




Extracting a Set of Important Keywords

* Splitting

* Stop words removal
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e Stemming




Extracting a Set of Important Keywords

 Compare IR-techniques

» Eye-tracking experiment to decide on the
importance of terms

* |IR-techniques: VSM, LSI, LDA

* Weighting schemes: tf, tf-idf, log, and binary-
entropy



Extracting a Set of Important Keywords

« Developers assessing the quality of the
summaries
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e Comparison with manually summarized
artifacts




Generating Natural Language Sentences

« Task: Generating natural language sentences
summarizing a software artifact.

* Examples

 Method summary: “Export plan component to

”

svg.

* Class summary: “An AbstractPlayer extension for m
player handlers. This entity class consists mostly of
mutators to the m player handler's state. ...”

* Release note: “New class SearcherLifetimeManager
implementing Closeable. ...”



Generating Natural Language Sentences

* Project source code/bytecode
 Set of releases
e |ssue tracker

« Version control repository




Generating Natural Language Sentences

* Natural language sentences representing
* method comments

e class comments
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 release notes

e commit notes




Generating Natural Language Sentences

* Splitting

* Abbreviation expansion
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Generating Natural Language Sentences

e Method summaries
e Statement selection
* Ending statements

e Statement with a method call with the
same action

* Conditional expressions



Generating Natural Language Sentences

 Method summaries (cont.)
* Sentence templates

* E.g., method call template

action theme secondary-args
and get return-type [if M returns a value]

Os.print(msqg)

—
acw/

/* Print message to output stream */



Generating Natural Language Sentences

e Class summaries based on class and method
stereotypes

* Filtering using

e Stereotypes
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 Access-level




Generating Natural Language Sentences

e Class summaries based on class and method
stereotypes

* Text generation
* General description
» Stereotype description
» Behavior description

* Inner classes enumeration



Generating Natural Language Sentences

 Class summaries based on class and method

L public class MPlayerHandler extends AbstractPlayer {

ég; public static final boolean GAP = false;

— private static final String LINUX COMMAND = "mplayer”;

prd private static final String WIN COMMAND = "win tools/mplayer.exe™;
U private static final String QUIET = "-quiet"”;

LLJ private static final String SLAVE = "-slave";

—

private Process process;

* [@istereotype CONSTRUCTOR[]
public MPlayerHandler() {[]

* f[istereotype COLLABORATOR[]
private static boolean testMPlayerAvailability() {[]

* f[istereotype SET]
private void play(AudioFile f) throws IOException {[]

* f[istereotype COMMAND(]
public wvoid finish{}) {[]




Generating Natural Language Sentences

 Class summaries based on class and method

stereotypes

public class MPl:
public stati¢

private stati
private stati

private stati
private stati

private Proce

. F
public MPlaye

;
private stat]

;

private void

An AbstractPlayer extension for m player
handlers. This entity class consists mostly
of mutators to the m player handler's state.

It allows managing:
- mute;

- volume; and

- next with no gap.

It also allows:

- finishing m player handler;

- handling next;

- playing audio file f;

- stopping m player handler;

- playing m player handler; and
handling previous.

g pe  COMMATIDY
public void finish() {[]



Generating Natural Language Sentences

* Release notes by organizing changes hierarchically and by
using sentence templates

 |dentifying and prioritizing code changes from the
versioning systems

* Files added, removed, moved
* Classes added, removed, renamed, moved

 Methods changed (signature, visibility, source code, or
set of thrown exceptions)



Generating Natural Language Sentences

* Release notes by organizing changes
hierarchically and by using sentence templates

* Sentence templates

e Deleted file: “File <file name> has been
removed.”

« Added class: class summaries (JSummarizer)



Generating Natural Language Sentences

* Release notes by organizing changes hierarchically
and by using sentence templates

e Other changes considered

e Licensing

Documentation

Libraries

Refactorings

Issues



New Features

CODEC-136 Use Charset objects when possible, create Charsets class for required character encodings
CODEC-133 Add classes for MD5/SHAl/SHEA-512-based Unix crypt(3) hash variants.

CODEC-88 Base32 encoder

CODEC-63 Implement NYSIIS

Bug fixes

CODEC-157 DigestUtils: Add MD2 APIs

CODEC-156 DigestUtils: add APIs named after standard alg name SHA-1

CODEC-155 DigestUtils.getDigest (String) should throw IllegalArgumentException instead of RuntimeException
CODEC-152 DigestUtils.getDigest (String) looses the orginal exception

CODEC-147 BeiderMorse phonetic filter give uncertain results

CODEC-132 BeiderMorseEncoder OOM issues

CODEC-131 DoubleMetaphone javadoc contains dead links

CODEC-130 Base64InputStream.skip skips underlying stream, not output

CODEC-96 Base64 encode() method is no longer thread-safe, breaking clients using it as a shared BinaryEncoder

TECHNIQUE

Improvements

e CODEC-151 Remove unnecessary attempt to fill up the salt variable in UnixCrypt
CODEC-150 Remove unnecessary call to Math.abs ()

CODEC-148 More tests and minor things

CODEC-143 StringBuffer could be replaced by StringBuilder for local variables
CODEC-139 DigestUtils: add updateDigest methods and make methods public.
CODEC-138 Complete FilterInputStream interface for BaseNCodecInputStream

Deprecated Code Components

Added Code Components

Refactored Source Code Files
Other Changes

Known Issues




Generating Natural Language Sentences

* Developers
e Accuracy

 Content Adequacy
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e Conciseness
 Importance

* In-field study




Generating Natural Language Sentences

 Tools used:

« Software Word Usage Model (SWUM)
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» JSummarizer for generating class summaries




Concept Location

* Task: determining the start of a change to the code
based on a change request

* Change requests are most often formulated in
terms of domain concepts

 Examples:

e “Correct error that arises when trying to paste a text”

-> find the location where the concept “paste” is
implemented in the code

e “Extend the print functionality to print also double-
sided” -> locate where the “print” concept is
implemented and extend it



Concept Location

 Flavors:
e Feature location
* Bug location/localization

e Concern location




Concept Location

* Source code
 |dentifiers
* Comments
* Level of document granularity

* File/class
 Method/function

* Query
* Manual
e Automatic




Concept Location

e Ranked list of code elements

e Needs to be evaluated manually by
developers

e Quality of output dependent on quality of
source code naming conventions/
comments and of the query
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Concept Location

Text normalization (white space and non-textual
tokens removal)

Splitting
Stop word removal
Stemming

POS Tagging



Concept Location

* TR models:
 Vector Space Model (VSM)
 Latent Dirichlet Allocation (LDA)
* Latent Semantic Analysis (LSA)
e Okapi BM25 and BM25F
* NLP:
e Action-oriented identifier graph (AOIG)

e Contextual search using POS tagging, phrase
extraction and matching (noun, verb,
prepositional phrases)

* Ontology generation



Concept Location

 Methodology

* Studies with developers

* Developers receive a change request and perform
concept location, assisted by a particular tool we
want to evaluate

 Comparison between using the tool/approach and
not using it



Concept Location

« Methodology

e Reenactment — automated evaluation

Mine repositories for past changes

Match a change request (i.e., bug report or feature
request) with patches and find the change set (i.e.,
methods or classes that changed)

Use the change request as the starting query

Success is achieved when one item in the change set
is located

Comparison with previous approaches or with CL
and without the tool



Concept Location

e Metrics
* IR metrics: Precision, MAP, MRR, etc. (Recall=1)

* Effectiveness = Rank of first relevant code element
(approximation of developer effort)
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Concept Location

* Lucene (VSM implementation)

* Mallet (LDA Implementation)
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* Dragon Toolkit (SVD, LDA, Porter stemmer,
Wordnet)




Concept Location

* TR techniques require configuration
e Based on previous work in IR
e Based on previous work in SE
* Heuristics based on empirical evidence

* Using genetic algorithms to automatically configure TR
for a dataset

* Hard to formulate queries

* Automatic and semi-automatic query reformulation



Concept Location

e Combination with static, dynamic, historical
analysis

e Combining results of different IR engines
e Clustering the software/results

e Adds structure to the results

e Improvements of the IR engine or data

e Smoothing filters, term boosting, etc.



Traceability Link Recovery

* Task: recovering conceptual links between
different types of artifacts (source code,
documentation, user manuals, tests,
design documents, etc.)

* Traceability: the ability to describe anc
follow the life of a requirement, in both a
forward and backward direction [Gotel and
Finkelstein 1994]




Traceability Link Recovery

 Examples: traceability between:
— Requirements and code
— Design and code
— Requirements and design
— Requirements and test cases
— Design and test cases
— Bug reports and maintainers
— Manual pages to code
— Emails to code
— Etc.

14



CL vs. Traceability Link Recovery

e Similarities:
— Both are instances of the concept assignment problem
— Both formulated as TR problems

— Similar user role: validation and relevance
feedback

 Differences:

— Different input and output -> different evaluation
(recall important)

— Variety of software artifacts
— No user query

15



Traceability Link Recovery

e Two sets of of software artifacts (source and
target)

e Granularity levels (classes, methods, files,
paragraphs, etc.)




Traceability Link Recovery

e Ranked list of artifact pairs — candidate links
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Traceability Link Recovery

Text normalization (white space and non-
textual tokens removal)

Splitting

Stop word removal (language specific —
different for English, Italian, etc.)

Stemming

POS tagging (keep nouns)



Traceability Link Recovery

e VSM

o LSI

Probabilistic models

* LDA
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* Language models
* Jensen-Shannon (JS) Divergence

e Etc.




Traceability Link Recovery

e Relevance feedback to reformulate query
e N-grams (2-grams work better)

e Hierarchical modeling — leverage the hierarchical

organization of artifacts

e Logical clustering to discover new links

20



Traceability Link Recovery

« Methodology: developers analyze the ranked
list of artifact pairs
— Analyze the entire list

— Use a cut point and analyze the top list

— Use a threshold and analyze the top list



Traceability Link Recovery

e Cut point:
e Constant: threshold on the number of recovered links
e Variable: percentage of links that have to be retrieved

e Threshold.
e Constant: a widely adopted threshold is € =0.70

e Scale: percentage of the best similarity value
between two artifacts.

e Variable: projected from [0, 1] into [min, max], where
min and max are the minimum and maximum
similarity values in the ranked list



Traceability Link Recovery
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Traceability Link Recovery

* Lucene (VSM implementation)

* Mallet (LDA Implementation)
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* Dragon Toolkit (SVD, LDA, Porter stemmer,
Wordnet)




Not all software engineering tasks are text
retrieval problems

25



Software Categorization

e Task: Assign a finite set of categories to software

applications. Each category briefly describes a
feature of the application.

 Examples:
— Database = Apache Cassandra
— Social 2 Instagram

— Build-management = Apache Maven

26



Software Categorization

Source code
Software profiles or descriptions
Bytecode (for Java applications)

API calls

27
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Software Categorization

e Relevant categories for each application
e Groups of similar applications

e Similarity between two applications

28
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Software Categorization

e Splitting
e Stop words removal

e Stemming

29
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Software Categorization

e |R Techniques: LDA, LSI, VSM
e (lassifiers: Naive Bayes, Decision Trees, SVM

e (lustering algorithms: K-means

30



Software Categorization

Gold set:
e (Categorized previously assigned to applications

e Developers’ opinion about the correctness of
recommended categories.
Precision, recall and F-measure.

%TP and %FP for classifiers

31



Defect prediction

» Task: Identify entities more likely to be faulty




Defect Prediction

* Project source code

* Level of granularity (class, method)




Defect Prediction

* For each entity predict

* The probability of having at least one fault

—
>
(ol
—
>
O

 Whether it is fault prone or fault free

e The number of faults




Defect Prediction

» Splitting

* Stop words removal
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e Stemming




Defect Prediction

Lexical metrics (VSM with tf-idf, LSI with tf-
idf, metrics for quality of identifiers)

Check if lexical metrics capture different
information compared to structural metrics

Prediction models



Defect Prediction

e (Case studies

Z
=
|_
<
>
—
<
=
Ll

 Comparison of prediction models




Defect Prediction

« Semantic relations:

e WordNet
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* POS tagging:

 Minipar




Bug Triaging

e Bug classification
« Recommend developer(s)
 Summarization of bug reports

v Duplicate bug detection




Duplicate Bug Detection

» Task: automatically detect bug reports concerning
the same fault

* Examples:

 Bug #21196: “I just see many description where
people continuously requesting google for
support urdu in Andriod ...”

 Bug #20161: “Hello I’'m unable to read any type
of urdu language text messages. Please add
urdu language in future updates of android ..."



Duplicate Bug Detection

e 2 bug reports

1 bug report




Duplicate Bug Detection

* True is the two bug reports are duplicate,
false otherwise
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 List of ranked top n most similar bug reports




Duplicate Bug Detection

« Splitting
e Stemming

« Stop words removal
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* Synonym and abbreviation replacement

* Spelling error correction




Duplicate Bug Detection

* Defining metrics based on the topic
distribution (LDA) and machine learning

classifiers

* VSM with cosine similarity (Dice, Jaccard)



Duplicate Bug Detection

e Evaluation:

- * accuracy
=

> « AUC

<

= * Kappa

e recall rate

* interviews




Duplicate Bug Detection

 LDA: MALLET
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Team Management

v ldentify distress or happiness

» Characterize personality of successful people
« Stack Overflow (SO) users

* Developers




Identify Distress or Happiness

« Task: Identify sentiments/emotions from a
written communication

* Examples:
» “That’s great work guys!” (Joy)

* “Who are the stupid people who manages
this group.” (Negative sentiment)



Identify Distress or Happiness

 Written communication, e.g.,
* Mailing lists

* |ssue tracking systems




Identify Distress or Happiness

« Sentiment scores (1 per communication)

 Emotions (possibly more than 1 per
communication)
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Identify Distress or Happiness

 Filter out automatically sent emails

 Remove quoted parts of emails threads
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 Filter out any non-natural language text




Identify Distress or Happiness

» Automatically assign a sentiment score per
email (the most extreme, i.e., Max)

* Manually assigh emotions to issue comments



Identify Distress or Happiness

* User study

* Feasibility of manually detecting emotions
from issue tracking systems (inter-rater
agreement)

* Precision of the automatically assigned
sentiment scores



Identify Distress or Happiness

* SentiStrength
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Present and Future of NLP
and TR for SE

« One of the fastest growing research areas in SE

« There is a need for more benchmarks and open
data to support comparison to previous approaches

e Current trends:
« Combining different approaches for better
overall results
« Adapting NLP and TR to the properties of
individual SE datasets and tasks



Evaluating/Adapting NLP and TR for SE

Part-Of-Speech (POS) tagging

« evaluating preprocessing templates

o comparing POS taggers

« technique for tagging identifiers
English-based semantic similarity techniques

Stemming

Tuning TR parameters to individual SE datasets



Slides and Additional Material

e http://www.cs.fsu.edu/~shaiduc/TRNLP




