
Would Static Analysis Tools Help
Developers with Code Reviews?

Sebastiano Panichella1, Venera Arnaoudova2, Massimiliano Di Penta3, Giuliano Antoniol2
1 University of Zurich, Department of Informatics, Switzerland

2 Polytechnique Montréal, Canada
3Dept. of Engineering, University of Sannio, Italy

Abstract—Code reviews have been conducted since decades in
software projects, with the aim of improving code quality from
many different points of view. During code reviews, developers
are supported by checklists, coding standards and, possibly, by
various kinds of static analysis tools. This paper investigates
whether warnings highlighted by static analysis tools are taken
care of during code reviews and, whether there are kinds of
warnings that tend to be removed more than others. Results
of a study conducted by mining the Gerrit repository of six
Java open source projects indicate that the density of warnings
only slightly vary after each review. The overall percentage
of warnings removed during reviews is slightly higher than
what previous studies found for the overall project evolution
history. However, when looking (quantitatively and qualitatively)
at specific categories of warnings, we found that during code
reviews developers focus on certain kinds of problems. For such
categories of warnings the removal percentage tend to be very
high, often above 50% and sometimes up to 100%. Examples
of those are warnings in the imports, regular expressions, and
type resolution categories. In conclusion, while a broad warning
detection might produce way too many false positives, enforcing
the removal of certain warnings prior to the patch submission
could reduce the amount of effort provided during the code review
process.

Keywords—Code Review, Static Analysis, Mining Software
Repositories, Empirical Study

I. INTRODUCTION

Modern Code Reviews (MCR) [6] represent a less for-
mal way of conducting code peer reviews, which has been
a software engineering consolidated practice since several
decades [4], [12], [21]. During code reviews, developers try
to improve software quality in different ways, for example,
fixing bugs or making the code easier to be maintained.

Developers often use tools that facilitate the code review
process. Gerrit [2] for example, is one of the tool most used
in open source projects for such purpose. When performing
MCR, developers can also use other forms of support, for
example checklists or organizational coding standards, or, very
simply, just rely on their own experience. One category of tools
that can serve as an aid to developers during code reviews
are static analysis tools, which analyze either source code or
bytecode (in the case of Java), as they are able to provide
various sorts of warnings to developers. Warnings may be
related to the software design (e.g., high coupling between
objects), code style (e.g., missing space after a comma),
documentation (e.g., incomplete Javadoc comments), etc. Nev-
ertheless, a weakness of these tools is that they might provide a
too extensive list of recommendations, most of which might be

irrelevant (and noisy) for developers. For this reason, previous
work has studied how static analysis tool warnings [14] or
vulnerabilities [11] are taken into account during software
evolution. However, to the best of our knowledge, nobody has
studied to what extent developers take care of such warnings
during code reviews.

This paper aims at investigating (i) whether warnings raised
by static analysis tools are removed during code reviews;
(ii) what kinds of warnings developers pay more attention
on during code reviews; and (iii) whether there is qualitative
evidence of dealing with warnings in software repositories
and/or reviews’ comments. To this end, we use two static
analysis tools—namely CheckStyle [1] and PMD [3]—and
mine data from the Gerrit repositories of six Java open source
software projects—in three of which developers actually used
static analysis tools. While previous studies investigating the
use of static analysis tools mainly focus on a quantitative
analysis of how warnings evolve across the software evolution
history [14], [11], this paper puts its attention on a specific
phase—i.e., code review rather than the whole development
process. It also complements the quantitative analysis with a
qualitative one, providing evidence that developers take actions
to assure the removal of such warnings.

Results of this study indicate that, on the one hand, if we
look at the overall set of warnings highlighted by static analysis
tools, their density in the source code is only slightly reduced
during each review, while the overall percentage of removed
warning is slightly above (between 6% and 22%) what pre-
vious studies have found (about 10%) for bug fixes [14]. On
the other hand, when performing a deeper analysis, we found
that developers tend to focus their review activity on specific
kinds of problems, and that such problems tend to be removed
with percentages in many cases above 50% and in some cases
100%. In summary, if properly used, static analysis tools can
provide a useful support during the development process. In
other words, the removal of certain warnings before submitting
a patch could help reducing the burden during the review
process. Finally, developers can benefit from our analysis as it
can be used to provide suggestions for improvement of their
warning configurations, in case one exists, or for creating one,
if none exists.

Replication package. A replication package is available
online1. It includes (i) information about the path sets of
the analyzed code reviews; (ii) comments posted during the

1http://ser.soccerlab.polymtl.ca/ser-repos/public/tr-data/
2015-saner-code-reviews.zip.

978-1-4799-8469-5/15 c© 2015 IEEE SANER 2015, Montréal, Canada

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

161

code reviews and when uploading patches; and (iii) warnings
detected by CheckStyle and PMD in the first and last patch
set of all analysed code reviews.

Paper structure. Section II provides an overview of the
capabilities and features offered by static analysis tools used
in this study. Section III details the study definition, research
questions, and planning, including the data extraction process.
Section IV discusses the results, while threats to its validity
are discussed in Section V. Section VI discusses the related
literature concerning studies on code review, while Section VII
concludes the paper and outlines directions for future work.

II. STATIC ANALYSIS TOOLS

Static analysis tools perform analysis of source code or,
in some cases, of byte code or binaries, with the aim of
complementing the work of the compiler in highlighting po-
tential issues that can arise in a software system. Examples of
issues are related to uninitialised or unused variables, empty
catch blocks, but also poorly commented and organized code
(too long lines or methods). In this work we consider two
widely adopted static analysis tools, namely, CheckStyle [1]
and PMD [3]. Their choice is motivated by different factors:
besides being quite popular, the two tools differ in the kinds
of analyses they perform, i.e., CheckStyle focuses more on
readability problems, whereas PMD tends to highlight sus-
picious situations in the source code. In addition, as we are
only interested in partial source code, i.e., source code that
underwent a review, we used tools that do not require the code
to compile. For this reason, tools such as FindBugs [13] that
require the code to be compiled were not considered in this
study.

Both CheckStyle and PMD are highly configurable tools
that help users to enforce the adherence to coding standards by
reporting violations to those standards. Such tools come with
a set of predefined configurations some of which are general,
while others can be customized for a particular project. For
example, the basic category of PMD contains a collection
of rules that report violations, or warnings, to general good
practices. Examples of violations are the use of empty catch
blocks and an inappropriate use of a for loop (instead of a
while loop). Other rules in the basic category report possible
errors in the code such as misplaced null check (e.g., in a
conditional statement the null check is placed after an access to
the object) and jumbled incrementer (i.e., when in two nested
for loops the second loop increments the first index rather than
the second). An example of a rule that must be configured for a
particular project is the header rule of CheckStyle that ensures
that a source file begins with the specified header.

For the purpose of this study, we analyzed only warnings
that do not require customization and can be executed on any
project. Tables I and II show the analyzed categories and the
number of analyzed warnings in each category for CheckStyle
and PMD, respectively. It is worth noting the diversity of
the considered warnings: they spread from warnings regarding
style (e.g., whitespace), documentation (e.g., annotations and
comments), and naming conventions through warnings regard-
ing the code (e.g., possible coding errors, unused code, and
code optimization) to warnings dealing with design (e.g., defin-
ing an interface without any behavior and high coupling
between objects).

TABLE I. CHECKSTYLE - ANALYZED WARNINGS.

Category # warnings
Annotations 5
Block Checks 5
Class Design 8
Coding 43
Duplicate Code 1
Imports 7
Javadoc Comments 6

Category # warnings
Metrics 6
Miscellaneous 13
Modifiers 2
Naming Conventions 10
Regular expressions 1
Size Violations 8
Whitespace 12

TABLE II. PMD- ANALYZED WARNINGS.

Category # warnings
Android 3
Basic 23
Braces 4
Clone 3
Code size 13
Comments 3
Controversial 23
Coupling 5
Design 54
Empty 11
Finalizers 6
Imports 6
J2ee 9

Category # warnings
Javabeans 2
Junit 12
Logging-jakarta-commons 4
Logging-java 5
Migrating 14
Naming 20
Optimizations 12
Strict exception 12
Strings 16
Sun security 2
Type resolution 4
Unnecessary 7
Unused code 5

III. STUDY DEFINITION AND DESIGN

The goal of this study is to analyze code reviews, with
the purpose of understanding how static analysis tools could
have helped in dealing with warnings developers solved during
code reviews. The quality focus is, on the one hand, software
maintainability and comprehensibility that code reviews aim at
improving and, on the other hand, reducing developers’ effort
during the code review task.

The context consists of two static analysis tools for Java,
namely CheckStyle and PMD, and code reviews and history
changes related to six Java open source projects, namely
Eclipse CDT, Eclipse JDT Core, Eclipse Platform UI, Motech,
OpenDaylight Controller, and Vaadin. Eclipse CDT is an
Integrated Development Environment for C and C++, part of
the Eclipse development environment, whereas Eclipse JDT
core is the basic infrastructure of the Eclipse Java IDE,
and Eclipse Platform UI provides the basic building block
for building user interfaces within Eclipse. Motech is an
open source suite for developing mobile health (mHealth)
applications. OpenDaylight Controller is a component of an
open platform to enable Software-Defined Networking (SDN),
and Network Functions Virtualization (NFV). Vaadin is a
framework to build Java Web applications. These projects were
mainly chosen due to the availability of review information
through Gerrit, but also, due to their different domain and
size. Finally, and more important, we have evidence, for three
of the projects, of the use of static analysis tools in the
context of their development process. Specifically, while we
did not find evidence that the three Eclipse projects use static
analysis tools—either the tools we considered or other tools—
OpenDaylight Controller and Vaadin used CheckStyle, while
Motech used both. The evidence of the usage of such tools
was found in the version control repositories of the projects
with the presence of configuration XML files for the static
analyzers. The main characteristics of the analyzed projects
are reported in Table III.

162

TABLE III. CHARACTERISTICS OF THE ANALYZED PROJECTS.

Project URL Observed Size range # of reviews Uses Uses
period (KLOC) analyzed CheckStyle PMD

Eclipse CDT www.eclipse.org/cdt 2013-11-29–2014-09-22 1,500–1,550 309 7 7
Eclipse JDT core www.eclipse.org/jdt/core 2013-06-24–2014-09-09 2,092–2,305 16 7 7
Eclipse Platform UI www.eclipse.org/eclipse/platform-ui 2013-05-23–2014-09-24 2,736–2,554 113 7 7
Motech http://motechsuite.org 2014-01-01–2014-09-24 149–171 161 X X
OpenDaylight Controller www.opendaylight.org/software 2013-07-04–2014-09-24 586–1,909 209 X 7
Vaadin https://vaadin.com/home 2013-06-01–2014-09-24 6,174–6,114 180 X 7

Fig. 1. Gerrit: Eclipse CDT - code review #26418.

This study addresses the following research questions:

• RQ1: To what extent warnings detected by static analysis
tools are removed during code reviews? The rationale of
this research question is to analyze whether code reviews,
overall, contribute to affect the presence of problems in
the code highlighted by static analysis tools. In this cir-
cumstance, we do not distinguish among different kinds of
warnings, but we rather observe the overall phenomenon.

• RQ2: What kinds of warnings detected by static analysis
tool are mainly considered during code reviews? This
research question is a follow-up of the previous one.
However, while in RQ1 we look at the overall variation
of the warnings, here we study whether some categories
are considered by developers more than others in the
context of code reviews. We perform both quantitative
and qualitative analyses.

A. Data Extraction

In the following, we describe how we extract data with
the aim of addressing the research questions formulated above.
Specifically, we describe (i) how we extract review information
stored in Gerrit, and (ii) how we identify the presence of code
issues using static analysis tools.

1) Review Analysis: Gerrit [2] is a tool, integrated with
the git versioning system, that supports developers during
the code review process. Gerrit allows developers to perform
local changes (release of new patches) and then submit these
changes in the Gerrit repository to be reviewed by other

developers. During code review, developers can play the role
of reviewers and of verifiers. Reviewers have the responsibility
to give feedbacks and comments to improve the quality of the
proposed patches. In addition, verifiers also evaluate whether
the patches are really useful to fix problems/defects without
breaking the behavior of the system. Thus, if patches meet
the defined criteria, they are automatically integrated into the
master repository and their status is changed to merged.

Similarly to Mukadam et al. [17] we collect the code
reviews data from Gerrit for all projects considered in our
study relying on the Gerrit API. The example in Fig.1 shows
a review2 for Eclipse CDT. In particular, each Gerrit review
has an ID, a set of review scores, the patch sets, the set of files
modified, and the reviews/verifiers comments. Specifically, a
review change is represented by a set of files called patch
set and corresponds to a commit. Until the patch set is not
accepted, the author of the patch may submit several patch
sets. The final and accepted version of the patch is the one that
will be integrated in the master repository of the project. The
data related to the patch sets allows us to study how warnings
detected by static analysis tools change during code reviews for
the files modified between the various releases of a patch (RQ1

and RQ2). Reviewers/verifiers’ comments can be of two types:
(i) comments inline in the patch and (ii) general comments not
included in the patch. We considered both of these comments
for the qualitative analysis performed to address RQ2.

Note that after collecting the code reviews, we filter out
those that do not modify Java files as we only detect warnings
in Java source code. In addition, we only retain those code
reviews for which at least one Java file could be mapped
between the initial and final patch sets. This filtering is needed
because we are interested to compare the warnings detected in
two versions of the same file—i.e., the initial version that is
submitted for review and the final version that is integrated in
the master repository of the project.

2) Static Analysis: Using the process described above, we
download from the Gerrit git the snapshot corresponding to the
submitted patch—i.e., the first patch in Gerrit that is submitted
for review—and the one corresponding to the last commit in
Gerrit—i.e., the one that is integrated in the master repository
of the project. Once such snapshots have been downloaded,
we analyze, for both snapshots, the classes involved in the
submitted patch using CheckStyle and PMD3. As mentioned
in Section II, we executed the tools with the available warnings
that did not require a customization for each project. For
warnings that require thresholds we used the default values.

2https://git.eclipse.org/r/26418
3We used version 5.7 of CheckStyle and version 5.1.3 of PMD.

163

B. Analysis Method

To address RQ1, we perform two kinds of analyses. First,
we study in detail what happened in each code review, i.e., how
warnings changed in such reviews. Then, we provide an
overview, for each project and for each static analysis tool,
of the percentage of warnings removed in the context of code
review. To study in detail each code review, we compare
the distribution of observed number of removed warnings.
However, one limitation of such an analysis is that different
reviews could impact code base of different size, and therefore
involve a highly variable number of warnings. For this reason,
we also compare the density of warnings in the source code
before and after reviews. Given a review ri, the warning
density before the review wdprei is defined as:

wdprei =
|wpre

i |
LOCpre

i

where |wpre| is the number of warnings a tool detects—in the
system snapshot corresponding to the patch sent for review—
limiting the attention to the classes affected by the patch only.
LOCpre

i is the size, in LOC, of the classes affected by the
patch. Similarly, the warning density after the review wdposti
is considered when applying the accepted patch to the system
and is defined as:

wdposti =
|wpost

i |
LOCpost

i

where |wpost
i | and LOCpost

i are defined similarly to |wpre
i |

and LOCpre
i , with the difference that the measurements of

warnings and LOC refer to the last commit of the review.
Once |wpre

i | and |wpost
i | have been measured for each review,

we compare their distributions across all reviews statistically
using Mann-Whitney U test (two-tailed). We use such a non
parametric test after verifying, using the Shapiro-Wilk proce-
dure, that data significantly deviate from normal distribution.
In addition to such a statistical comparison, we estimate the
magnitude of the observed differences using the Cliff’s d effect
size measure.

To address RQ2, we study whether the observed dif-
ferences in terms of warning density vary depending on
the kinds of warnings (described in Section II) that Check-
Style and PMD detect. To this aim, we use the Permutation
test, a non-parametric equivalent to the Analysis of Variance
(ANOVA) [7] to check whether the density difference vary
across different warnings. Wherever the permutation test in-
dicates the presence of a significant difference, we identify
which pair(s) of warning categories difference by using the
Tukey’s HSD (Honest Significant Differences) test [27]. This
allows us to observe which category of warning is taken more
into account during code reviews. Finally, in addition to the
statistical procedures described above, we use box plots to
depict the distributions of the differences observed for the
different categories of warnings.
Besides the quantitative analysis described above, RQ2 is
also addressed qualitatively by performing manual analysis,
for each project and for each static analysis tool, on 10%
randomly sampled code reviews that resolved at least one
warning. Note that the goal of the manual analysis is not

TABLE IV. CHANGES IN CHECKSTYLE WARNING DENSITY AND
NUMBER DURING CODE REVIEWS.

Density of warnings # of warnings
Project p-value Cliff’s d p-value Cliff’s d
Eclipse CDT 0.028 (*) 0.002 0.009 (*) -0.002
Eclipse JDT core 0.351 -0.008 0.624 0.004
Eclipse Platform UI 0.011 (*) 0.000 0.200 0.002
Motech 0.614 -0.010 3E-5 (*) -0.010
OpenDaylight Controller 0.205 0.012 1.95E-4 (*) -0.009
Vaadin 0.148 -0.002 0.209 0.000

TABLE V. CHANGES IN PMD WARNING DENSITY AND NUMBER
DURING CODE REVIEWS.

Density of warnings # of warnings
Project p-value Cliff’s d p-value Cliff’s d
Eclipse CDT 0.074 (.) 0.004 0.025 (*) -0.001
Eclipse JDT core 0.450 0.012 0.919 0.000
Eclipse Platform UI 0.132 0.002 0.857 0.000
Motech 0.080 (.) 0.003 8.56E-5 (*) -0.009
OpenDaylight Controller 0.005 (*) 0.025 0.002 (*) -0.004
Vaadin NA 0.000 NA 0.000

to validate the precision of static analysis tools but to gather
qualitative evidence on the kinds of warnings that developers
deal with during code reviews. Thus, we did not strive for
a statistically significant sample. Moreover, in addition to the
random sample, we also search in all reviewers’ comments
for such evidence. The manual analysis has been performed
by relying on different sources of information, namely (i) the
changes performed during the reviews, (ii) the output of the
static analysis tools on the first and last versions of the patch,
and (iii) the reviewers’ comments.

IV. ANALYSIS OF THE RESULTS

In the following, we report results of our study, with
the aim of answering the research questions formulated in
Section III.

A. RQ1: To what extent warnings detected by static analysis
tools are removed during code reviews?

Tables IV and V report, for all projects and for the two
tools (CheckStyle and PMD respectively), the results of the
paired Mann-Whitney test and the Cliff’s delta (d) effect
size obtained when comparing the distribution of warning
density, as well as absolute number of warnings, for all the
analyzed code reviews. Significant and marginally significant
p-values are shown with (*) and (.), respectively. We observe
a statistically significant difference between the density of
CheckStyle warnings in the first and last patch of the analyzed
code reviews for Eclipse CDT and Eclipse Platform UI. For
PMD, results are statistically significant for OpenDaylight
Controller and marginally significant for Eclipse CDT and
Motech. No change in the density is observed for Vaadin. In
all cases, the observed effect size is negligible.

Fig. 2 shows the density of CheckStyle (white) and PMD
(grey) warnings in the first patch sets for the different projects.
Comparing, on the one hand, projects that use static analysis
tools and, on the other hand, projects that do not use such tools,
there is no noticeable difference in the density distribution
of warnings in the first patch set between the two groups of
projects—a Mann-Whitney test comparing the two groups of

164

●●● ●●●●

●● ●● ●●● ●● ● ●●●●

●●● ●

●● ●

●● ● ●● ●

● ●● ●●● ●

●●● ● ●●●●

●●●●●●

● ●● ●●

●●● ●● ●●

Vaadin

OpenDaylight Controller

Motech

Eclipse Platform UI

Eclipse JDT core

Eclipse CDT

Vaadin

OpenDaylight Controller

Motech

Eclipse Platform UI

Eclipse JDT core

Eclipse CDT

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Fig. 2. Density of CheckStyle (white) and PMD (grey) warnings in the first
patch sets.

projects was not significant (p−value = 0.5038). Thus, based
on the available evidence, we cannot conclude that projects
using static analysis tools analyse the source code prior to
a code review. When comparing the cumulative percentages
of fixed warnings during code reviews (Tables VI and VII),
interesting insights emerge. First, as it can be noticed from
both tables, the observed percentages are inline with (and often
higher than) results of previous studies—showing that during
software evolution about 10% of warnings are being removed
[14]. Also, as it can be noticed, such percentages tend to be
particularly high (at least higher than other cases) for projects
that relied on static analysis tools during their evolution. For
example, for CheckStyle warnings we observe 15.06% for
Motech, 12.94% for OpenDaylight Controller, and 13.02% for
Vaadin, while for PMD we observe 15.18% in the case of
Motech. The only exception is represented by OpenDaylight
Controller, exhibiting an overall removal of 22.78% for PMD
warnings even if such a tool was not used. None of the PMD
warnings were resolved in the Vaadin project; recall that the
project does not use the tool.

TABLE VI. CHECKSTYLE - CUMULATIVE PERCENTAGES OF REMOVED
WARNINGS.

of warnings in Percentage of
Project first patch set last patch set resolved warnings
Eclipse CDT 21,087 18,684 11.40%
Eclipse JDT Core 3,260 3,045 6.60%
Eclipse Platform UI 4,409 4,009 9.07%
Motech 11,162 9,481 15.06%
OpenDaylight Controller 26,774 23,310 12.94%
Vaadin 484 421 13.02%

RQ1 summary: On the one hand, the density variation as
well as the absolute variation of warnings in each code review
is very small and in many cases not statistically significant. On
the other hand, when looking at the cumulative percentage of
removed warnings, such percentages are slightly higher than
findings of previous studies and higher for projects using static

TABLE VII. PMD - CUMULATIVE PERCENTAGES OF REMOVED
WARNINGS.

of warnings in Percentage of
Project first patch set last patch set resolved warnings
Eclipse CDT 13,652 12,112 11.28%
Eclipse JDT Core 1,382 1,309 5.28%
Eclipse Platform UI 2,587 2,295 11.29%
Motech 8,649 7,336 15.18%
OpenDaylight Controller 9,201 7,105 22.78%

analysis tools.

B. RQ2: What kinds of warnings detected by static analysis
tool are mainly considered during code reviews?

Figs 3– 6 show the distributions of the log differences in the
density of warnings between the first and last patch sets. Due to
the lack of space, we do not show boxplots for all projects. In
the following we discuss the results for each project. Wherever
we mention the presence of statistically significant differences,
these refer to p-values < 0.05 obtained by the Tukey’s HSD
test (significance level α = 5%). Such test was executed after
the permutation test indicated that in all projects the density
of warnings is significantly different for different categories of
warnings (p-values < 0.001). Due to limited space, we do not
report detailed results of permutation test and Tukey’s HSD.

a) Eclipse CDT: Warnings from the regular expressions
category are the ones with the most tangible decrease of
CheckStyle warning density. The difference with respect to
all other categories is statistically significant and in terms of
cumulative percentage, the fixed warnings represent 17% (349
out of 1,717). A warning from this category is for example
one that detects trailing spaces at the end of lines. Although
we did not find evidence that developers of Eclipse CDT
rely on static analysis tools, our qualitative analysis confirms
that developers of this project fix several issues highlighted
by CheckStyle during code reviews. Developers seem to pay
particular attention on the quality of the comments (fixed 161
out of 1,241 warnings from the comments category, i.e., 13%).
For example, in code review #20026 the first version of the
patch contains method EditorUtility.getTextEditor();
its javadoc does not provide a description of the parameter
IEditorPart editor (the tag @param must be used for
this purpose). The parameter description was added in the
Javadoc in the last version of the patch. The CheckStyle
warning JavadocMethod of the category Javadoc comment
allows to identify such issues. Developers also fix 25% (73
out of 286) of the duplicate code warnings. For example,
during code review #24522, one of the reviewers commented:
“Instead of sending commands directly to GDB, we should use
the DSF services. In this case, IStack.getFrameData(). This
is important to avoid duplicate code and enable caching".
Developers removed the duplicated portion of the source code
in the last version of the patch. Code duplication problems can
be detected by CheckStyle, thus reducing the effort required
by reviewers to find them manually.

The only statistically significant difference of the density of
PMD warnings is observed for warnings from the comments
category—statistically significant difference with half of the
categories. However, in terms of cumulative percentage, we
observe 100% removal for imports and typeresolution cat-
egories, where 19 and 9 warnings were fixed, respectively

165

(see Table VIII). Qualitative analysis also suggests that PMD
may help developers with code reviews by highlighting sev-
eral problems. For example, PMD detects for code review
#23550 that the conditional statement if(p != null &&
p instanceof ProcessFailureException) needs to be
simplified (design category). A reviewer commented: “p !=
null part is redundant here... the second part of the condition
covers the "null" case". Thus, in the last version of the
patch the condition was simplified to if (p instanceof
ProcessFailureException). Moreover, PMD also high-
lights if statements that are not followed by braces (cat-
egory braces). This is the case for an if statement in
PDOMExternalReferencesList.java submitted for code
review (#20972). The reviewer commented: “If statements
with ’else’ branches should have curly braces around both
branches".

TABLE VIII. ECLIPSE CDT - CUMULATIVE PERCENTAGES OF
REMOVED PMD WARNINGS.

of warnings in Percentage of
Category first patch set last patch set resolved warnings
basic 8 2 75%
braces 477 410 14%
codesize 82 34 59%
comments 1,750 1,559 11%
controversial 1,117 986 12%
coupling 3,800 3,424 10%
design 144 84 42%
empty 86 58 33%
imports 19 0 100%
j2ee 17 9 47%
javabeans 133 98 26%
junit 96 60 38%
logging-jakarta-commons 0 0 NA
logging-java 45 22 51%
migrating 0 0 NA
naming 876 749 14%
optimizations 4,015 3,704 8%
strictexception 0 0 NA
strings 761 725 5%
sunsecure 3 1 67%
typeresolution 9 0 100%
unnecessary 202 182 10%
unusedcode 12 5 58%

b) Eclipse JDT core: Fig. 3 shows that warnings
from the regular expressions, duplicate code, and annota-
tions categories of CheckStyle have the highest change in
the density. The difference is statistically significant only
for regular expressions and duplicate code and their re-
spective cumulative percentages of fixed warnings are 31%
(85 out of 276) and 72% (21 out of 29). An example
of fixed warning from the regular expressions category
can be found in code review #17926 where a reviewer
commented in DefaultCodeFormatterOptions.java: “...
trailing whitespace must be removed". Another category
from which developers resolved warnings is miscellaneous
(34 out of 348, i.e., 10%). For example, in review #6848
Checkstyle highlights an instance of TodoComment in
ReusableFileSystem.java: “// TODO: cleanup current in-
stance". A reviewer, in accord with the identified warning, asks
the author of the patch: “Fix the TODO". Warnings belonging
to the imports and class design categories are also fixed
by developers. For example, CheckStyle highlighted a star
import in JavaCorePreferenceModifyListener.java for
code review #17299. Indeed, the initial patch set con-
tained a starred import: org.eclipse.jdt.core.*. Since
this import is actually using a single class of the pack-
age import org.eclipse.jdt.core, it was replaced with

●●● ● ●●● ●●●● ●●●●

● ● ●● ●●●● ●●

●● ● ●●● ●●● ● ●● ●●● ● ●● ●●● ●●● ●●●● ●●●● ●●●● ●●●●● ●● ●

●● ● ● ●

● ●●●●●●●●● ●● ●

●●● ●● ●●● ●● ●●● ●● ●● ●●●●● ● ●●●● ●●●●●●●● ●●●●●

●● ●●● ●●●●

●●●●●● ●● ●● ●● ● ●●● ●

●

●● ●●● ●● ●●●● ●●●● ●●

●● ●● ●●

●● ●● ●● ●● ●●● ●● ● ●●● ●

● ●● ●●●●● ● ●● ●

Annotations

Block Checks

Class Design

Coding

Duplicate Code

Imports

Javadoc Comments

Metrics

Miscellaneous

Modifiers

Naming Conventions

Regular expressions

Size Violations

Whitespace

1e
−0

6

1e
−0

4

1e
−0

2

Fig. 3. Eclipse JDT core - density variation of CheckStyle warnings.

●●

●● ● ●

●●●● ●●●● ●●● ●●●●●●

●● ●●● ●●● ●●● ●●●

●●●● ● ●●●●● ●●● ● ● ●● ●●● ●●●● ●●●

● ●●●● ●●● ●● ●

●●●● ●●●●●● ●● ●● ●● ● ●● ●●●● ●●●

●

●●●

●

●

●●

●●

●● ●●●● ● ● ● ●● ● ● ●●● ●●●

●●● ●●●●●● ●●● ●●●●● ●●● ●

●

●●

● ●●● ●●●

● ●● ●

● ●●

basic
braces
clone

codesize
comments

controversial
coupling
design
empty
imports

j2ee
javabeans

junit
logging−jakarta−commons

logging−java
migrating
naming

optimizations
strictexception

strings
sunsecure

typeresolution
unnecessary
unusedcode

1e
−0
6

1e
−0
4

1e
−0
2

Fig. 4. Eclipse JDT core - density variation of PMD warnings.

org.eclipse.jdt.core.JavaCore in the final patch set.
From Fig. 4 we note that the highest change of density of
PMD warnings concerns the migrating category—the differ-
ence is statistically significant—and this category has a 100%
cumulative fix (for a total of 60 warnings).

c) Eclipse Platform UI: Also for Eclipse Platform UI,
the density of regular expressions warnings changed the most
compared to the other categories of CheckStyle warnings; the
cumulative percentage the fixed warnings represent 9% (93 out
of 993). An example of fixed warning from this category can be
found in code review #31002 where a reviewer commented on
the need to fix trailing white spaces. Instead, in code review
#24230 CheckStyle detected several warnings related to the
whitespace category. Indeed, various reviewers’ comments say:
“Whitespace please remove". The cumulative percentage of
fixed warnings from this category is 44% (11 out of 25).
We observe a change in the density of PMD warnings in only
few categories, namely optimizations, design, coupling, con-

166

troversial, and comments—there is no statistically significant
difference among them. In terms of cumulative percentages we
observe high numbers for controversial (41%, which is 18 out
of 44 warnings) and braces (39%, 7 out of 18).

d) Motech: Fig. 5 shows that the highest change in
the density of CheckStyle warnings is again from the regular
expressions category—the difference is statistically significant
and the percentage of fixed warnings is 100% (representing 13
warnings). Table X shows the CheckStyle and PMD configura-
tions of Motech. We observe that coding, naming conventions,
and whitespace are the categories with the highest number
of configured CheckStyle warnings. A high percentage of the
whitespace warnings are actually fixed during code reviews
(89%, which represents 74 fixed warnings). The cumulative
percentages for coding and naming conventions are 12% (531
fixed warnings out of 4,448) and 13% (145 out of 1,093),
respectively. Interestingly, regular expressions have only 1 con-
figured check (see Table X). An example of fixed warning from
this category can be found in code review #4126. After the
initial patch was submitted, the owner of the patch commented:
“Patch Set 1: Do not submit. I have a few trailing whitespace
issues - will fix and upload a new patch."
Design and unused code are the two categories from PMD with
the highest number of configured warnings for Motech. The
cumulative percentages of fixed warnings in those categories
during code reviews are also high—77% (30 out of 39)
and 100% (4 fixed warnings). An example of warning that
is not part of the project configuration but that developers
took care of during the code review process is confusing
ternary from the design category. The rule recommends to
avoid negation in an if statement when the else clause is
present. In code review #3873, in Lookup.java, the code
lookupFieldDto.getId() != null of the initial patch
was replaced with lookupFieldDto.getId() == null in
the final l patch and the else blocks were reversed. Adding
confusing ternary would allow developers to take care of other
instances of the warning.
Qualitative analysis of the code review comments also show
that developers take care of warnings reported by static
analyzers. For example, in code review #4383, one of the
reviewers commented “use spaces after commas (don’t we
have a checkstyle rule for that?)". The reviewer is actually
right—there is a configured CheckStyle rule for missing spaces
after commas but the severity of the rule is low—it is set
to info4. Developers may benefit from updating the current
configuration.

e) OpenDaylight Controller: None of the CheckStyle
categories has a noticeable statistically significant difference
of the delta density of warnings compared to the other cat-
egories. However, from Table IX we observe that for three
categories, namely metrics, modifiers, and regular expressions,
all warnings have been fixed—i.e., 100% cumulative. Table XI
shows the CheckStyle configuration of the project. From the
configured checks, we observed that during code reviews
developers fix trailing spaces and unused imports (e.g., in code
review #11400). The number of configured warnings is not
very high. Developers would probably benefit from extending
their CheckStyle configuration. For example, checking for

4CheckStyle provides four severity levels, namely, ignore, info, warning,
and error.

● ●●●●●● ●● ●● ●●●● ●● ●●●● ● ●●●● ●● ●● ●●●●●●●●●

●●● ● ● ●● ●●●●●● ●●● ●● ●●●● ●● ●●

●●● ●● ● ●●● ●● ●●● ●● ● ●●● ●● ●●●●● ●●● ● ●●●●●●● ●●● ●● ●●●●●● ● ●● ●●● ●●●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ●●●● ●●●●●● ●●● ●●● ● ●●● ●● ●● ●●●● ●● ●●● ●●● ●●●●● ● ●● ●●●●●

●●

●●●● ●●● ●●●●● ● ●● ●●●● ●●●●● ● ●●● ●●●●●●● ●●●●●●● ●●●● ●●●●● ●●●●● ●● ●●●● ●●●● ● ●●●●●●● ● ●●●● ●●●● ● ●●●● ●●●● ●●●

●● ●● ●●●●● ●● ●●● ●● ● ●● ●●● ●● ●●● ●● ●●●● ●● ●●●● ●● ●● ●● ●●●● ●●●●●●● ●●● ●●●● ●●●●●●● ● ● ●●●●●●●● ●● ●●● ● ●●● ●● ● ●● ●●●● ●●● ●●●●●●● ●● ●●●●●● ● ● ●● ●●●●● ●

●● ●●● ●●● ● ● ●● ●●●

● ●●●● ● ●●●●●●●● ● ●●●●●● ●●●●●●

● ● ●●● ●●● ● ●●●●●● ●●●●●●●● ●● ●●●●● ●●● ●●● ● ●●●●● ●● ●● ●●

●

●● ●●● ●●● ● ●●● ●●● ●●● ●●●● ●● ●

●●●●● ●●●●●●●

Annotations

Block Checks

Class Design

Coding

Duplicate Code

Imports

Javadoc Comments

Metrics

Miscellaneous

Modifiers

Naming Conventions

Regular expressions

Size Violations

Whitespace

1e
−0

6

1e
−0

4

1e
−0

2

Fig. 5. Motech - density variation of CheckStyle warnings.

file headers may be useful as during code review #11048
a reviewer commented: “I forgot to tell you, that all new
files need to contain a copyright header.". Three warnings are
configured from the imports category, but they do not deal
with the order of imports. The ImportOrderCheck could be
added as instances of this warning (resolved in code review
#9490, for example).
Fig. 6 shows the change in density of PMD warnings. We
observe that warnings from the migrating category have an
important statistically significant decrease in the density com-
pared to the rest of the categories. Qualitative analysis also
suggests that adding a PMD configuration may help devel-
opers. For example, many occurrences from the optimization
category of PMD (e.g., local variables and method argu-
ments could be final) were fixed during code review #11048.
Other examples are warnings from the logging category: The
GuardDebugLogging warning recommends that “when log
messages are composed by concatenating strings, the whole
section should be guarded by a isDebugEnabled() check
to avoid performance and memory issues." Multiple instances
of this warning were fixed in RaftActor.java during code
review #11182.

f) Vaadin: We observe a change in the density of
warnings in only two of the CheckStyle categories—Javadoc

TABLE IX. OPENDAYLIGHT CONTROLLER - CUMULATIVE
PERCENTAGES OF REMOVED CHECKSTYLE WARNINGS.

of warnings in Percentage of
Category first patch set last patch set resolved warnings
Annotations 10 6 40.00%
Block Checks 2,423 2,173 10.32%
Class Design 262 165 37.02%
Coding 5,401 4,611 14.63%
Duplicate Code 31 18 41.94%
Imports 118 55 53.39%
Javadoc Comments 2,511 2,198 12.47%
Metrics 11 0 100.00%
Miscellaneous 9,914 9,141 7.80%
Modifiers 13 0 100.00%
Naming Conventions 1,525 1,285 15.74%
Regular expressions 27 0 100.00%
Size Violations 3,478 3,110 10.58%
Whitespace 1,050 548 47.81%

167

● ●●●

●●●

●●● ● ● ●●●●●●●●●● ● ●●●● ●●●●●

●●●●● ●●●● ●●●●● ●● ● ●●●● ●●● ●●● ●●●● ●●● ●● ● ●●● ●

● ●●● ●● ●● ● ●●● ●● ●●●●● ●● ●●●●●● ●●● ●● ●●● ● ●● ●● ●●● ●●● ●●●●● ●● ●●●● ●●● ●●● ●●●●● ● ●● ●●● ●

●●●● ●● ●● ● ●●●●●● ●● ●● ●●●●● ●● ●●● ●

● ●●● ●●●● ● ●●●● ●●● ●●●●● ●● ●●● ● ●●●● ●● ●● ●●● ●●●●●●●●●●●●●●

● ● ●● ●●●●●●

● ●●●

●● ● ●●●●●● ●●●●●●●

●●●● ●● ●●●

●●

●

●●● ●●●● ●●● ●●● ●●●● ●● ●●● ●●●●●●●● ●● ● ●●●●● ●● ●●●

●●● ● ●●● ●●●● ●●●●●●●●● ●● ●●●●●●● ● ●●●● ●●

●●●●●● ● ●●●

●●●● ● ●●●●

●●●●●●●●●●●● ●●●●●●●● ●●● ●●●

●●●●

● ● ●●●● ● ●●

basic
braces
clone

codesize
comments

controversial
coupling
design
empty
imports

j2ee
javabeans

junit
logging−jakarta−commons

logging−java
migrating
naming

optimizations
strictexception

strings
sunsecure

typeresolution
unnecessary
unusedcode

1e
−0
5

1e
−0
4

1e
−0
3

1e
−0
2

1e
−0
1

Fig. 6. OpenDaylight Controller - density variation of PMD warnings.

comments and duplicate code. In terms of cumulative percent-
ages the fixed warnings correspond to 100% (4 fixed warnings)
and 12% (59 out of 480 warnings), respectively. Table XII
shows the CheckStyle configuration for the project. We observe
that developers have configured a large amount of warnings
from a large set of categories. In contrast to the other projects
that we studied, we found very little quantitative and qualitative
evidence that developers took care of the warnings reported by
static analysis tools during code reviews. There is no change
in the density of PMD warnings.

In the previous research question, we looked for a change
of the density of all warnings that we consider in this work.
One may argue that not all of those warnings are important
for developers. As discussed in the above paragraphs, different
projects stress on different categories of warnings. Thus, we
perform the same analysis but this time we consider only the
warnings that have been resolved in each project. In other
words, we filter out warnings that are never taken care of
during code reviews. Results are very similar to the results
in Tables IV and V and thus we do not show them in details.

Finally, for the projects that have a CheckStyle and–or
PMD configuration we perform a Mann-Whitney U test con-
sidering only the configured checks. Again results are similar
to those reported in RQ1 except for CheckStyle warnings in
two projects. We found marginally significant difference for
the number of warnings in the Vaadin project and statistically
significant difference for the density of warnings for Motech—
both with negligible effect sizes.

RQ2 Summary: We found that some specific categories
of warnings, for example imports, regular expression, and type
resolution were in general removed more than others across
all projects, and likely deserve more attention by developers.
Noticeably, warnings from categories for which developers
have specifically configured static analysis tools were largely
removed. Thus, results confirm that static analysis tools can
be used to support developers during code reviews. Enforcing
the removal of certain warnings prior to submitting a patch
for review could 1) reduce the time and effort provided by

TABLE X. MOTECH - CHECKSTYLE AND PMD CONFIGURATIONS.

CheckStyle category # warnings
Coding 17
Naming Conventions 10
Whitespace 9
Block Checks 5
Class Design 4
Miscellaneous 4
Imports 3
Size Violations 3
Metrics 2
Modifiers 2
Javadoc Comments 1
Regular expressions 1

PMD category # warnings
Design 4
Unused code 4
Strict exception 3
Custom 2
Strings 2
Sun security 2
Code size 1
Coupling 1
Javabeans 1
Logging-java 1
Migrating 1

TABLE XI. OPENDAYLIGHT CONTROLLER - CHECKSTYLE
CONFIGURATION.

CheckStyle category # warnings
Imports 3
Coding 2
Miscellaneous 1

CheckStyle category # warnings
Regular expressions 1
Whitespace 1

reviewers/verifiers and 2) speed up the code review process,
thus, decreasing the time before a patch is integrated in the
master repository of the project. To decide which categories
of warnings need to be checked prior to a patch submis-
sion, developers can rely on prior warnings that have been
removed—i.e., using the historical data of the project—and on
the preconfigured warnings of the project.

V. THREATS TO VALIDITY

This section discusses threats to the study validity. Threats
to construct validity concern relationship between theory and
observation, and are related to imprecisions in our measure-
ments. We do not have issues concerning the presence of false
positives in the tools’ output, because we are interested to study
warnings as they are highlighted by tools.

Threats to internal validity concern factors, internal to our
study, that could have influenced the results. When we study
how the density of warnings vary over time, we are aware that
this can happen for various reasons, e.g., because a source code
fragment is removed when it is no longer needed. We supply
to this limitation with the qualitative analysis carried out in
RQ2, in which we perform a manual analysis on a subset of
the reviews. Also, as mentioned in Section III, while we know
that in some projects developers used static analysis tools, it is
possible that some tools were also used in the other projects,
e.g., Eclipse, but we do not have trace of that.

Threats to conclusion validity concern the relationship be-
tween experimentation and outcome. While part of the analyses
of RQ1 and RQ2 are supported by appropriate statistical
procedures, other findings of RQ2 mainly have a qualitative
nature, hence no statistical procedure is used.

Threats to external validity concern the generalization of
our findings. Admittedly, the study is limited to six Java
projects, three of which belonging to the Eclipse ecosystem.
Although we are aware that further studies are needed to sup-
port our findings, our investigation was, intendedly, relatively
limited in size to allow us to complement the quantitative
analysis with a manual, qualitative analysis on 10% of the
code reviews (for each project) in which developers remove

168

TABLE XII. VAADIN - CHECKSTYLE CONFIGURATION.

CheckStyle category # warnings
Whitespace 11
Coding 10
Naming Conventions 9
Miscellaneous 6
Block Checks 5
Class Design 5

CheckStyle category # warnings
Imports 5
Javadoc Comments 5
Size Violations 3
Regular expressions 2
Headers 1
Modifiers 1

warnings highlighted by static analysis tools. Also the choice
of static analysis tools is limited to two of them, not only for
simplicity’s sake, but also for the need of analyzing the code
without compiling it (required, for example, by FindBugs).

VI. RELATED WORK

This section discusses related literature about modern code
reviews, as well as empirical studies investigating problems
detected by static analysis tools in the software evolution.

A. Code Review

Rigby et al. [24], [23] empirically investigated the use
of code reviews in open source projects. They identified
several guidelines that developers should follow in order to
make their patches accepted by reviewers. For instance, they
suggested small, independent, complete patches. Weißgerber
et al. [29] found that the probability of a patch to be accepted
is about 40% and that, in line with Rigby et al. ’s findings
[25], [24], [23], smaller patches have higher chance of being
accepted than larger ones. Baysal et al. [8] discovered that
patches submitted by casual contributors are more likely to be
abandoned (not reviewed) compared to the patches submitted
by core contributors. Also, Baysal et al. [9] investigated factors
that can influence the review time and patch acceptance.
Their investigation highlighted that the most important factors
are (i) the affiliation of the patch writer and (ii) the level
of participation within the project. In relation to the above
works, our study is relevant because the removal of certain
warnings developers have to deal with during reviews would
also contribute to the acceptance of patches.

Other studies focused on how developers perform code re-
views. Rigby et al. [26] compared two peer review techniques,
i.e., RTC (Review Then Commit) and CTR (Commit Then
Review), and discovered that (i) CTR is faster than RTC, and
(ii) CTR is used mainly by core developers. Nurolahzade et
al. [20] confirmed these findings and showed that reviewers
not only try to improve the code quality, but they also try to
identify and eliminate immature patches. Mantyla et al. [15]
analyzed the code review process in both commercial and
FLOSS projects, and observed that the type of defects that are
discovered by the code reviewers are related, in the majority
of the cases (75%) to non-functional aspects of the software.
Nurolahzade et al. [20] showed that non-functional defects are
hard to identify using automatic tools and thus, they should be
identified through manual inspections performed by the owners
of the modules. Bacchelli and Bird [6] studied the code review
process across different teams at Microsoft by surveying
developers and manually classifying review comments. They
showed that the available tool support does not always meet
developers’ expectations. McIntosh et al. [16] discovered that
the large degree of freedom that code reviewers have impacts

modern reviewing environments and software quality. We share
many findings with the above authors and focus specifically on
work done during code review on aspects related to warnings
highlighted by static analyzers. Related to what Bacchelli and
Bird [6] found, our study indicates that (static analysis) tools
can indeed be useful when properly configured.

B. Static Analysis Tools

The use of static analysis tools for software defect detection
is becoming a common practice for developers during software
development and has been studied by several researchers.

Kim and Ernst [14] studied how warnings detected by
static analysis tools (JLint, FindBugs, and PMD) are removed
during the project evolution history, finding that about 10%
of them are removed during bug fixing, whereas the others
are removed in other circumstances or are false positives.
As a consequence, warning prioritization done by tools tend
to be pretty ineffective, with precision below 10%. They
suggested to prioritize warnings using historical information,
improving warning precision in a range between 17% and 67%.
While we share with Kim and Ernst the analysis of warning
removal, our perspective is different and complementary to
theirs. Rather than building a model to prioritize warnings, we
deeply investigate—from a qualitative but also and above all
from a qualitative point of view—what happens to warnings
in the context of code reviews. A related analysis, focusing
on vulnerability, was also performed by Di Penta et al. [11]
who studied what kinds of vulnerabilities developers tend to
remove from software projects. Our work differs from the work
of Di Penta et al. as we focus on generic warnings instead of
specific ones (vulnerabilities) and, as said before, we study
warning removals in the context of code reviews.

Thung et al. [28] manually examined the source code of
three projects to evaluate the precision and recall of static
analysis tools. Their results highlight that static analysis tools
are able to detect many defects but a substantial proportion
of defects is still not captured. Nanda et al. [19] performed
a similar study focusing on evaluating null pointer defects;
they obtained similar findings. Zheng et al. [30] evaluated
the kinds of errors that are detected by bug finder tools and
their effectiveness in an industrial setting. The majority of the
defects found are related to programmers’ errors and some
of the defects can be effective for identifying problematic
modules. Ayewah et al. [5] showed that the defects reported
by FindBugs are issues that developers are really interested to
fix. Rahman et al. [22] compared statistically defect prediction
tools with bug finder tools and demonstrated that defect
prediction achieves (i) better results than PMD and (ii) worst
results than FindBugs. Instead, Nagappan et al. [18] found that
the warning density of static analysis tools is correlated with
pre-release defect density. Moreover, Butler et al. [10] found
that, in general, poor quality identifier names are associated
with higher density of warnings reported by FindBugs.

VII. CONCLUSION AND FUTURE WORK

This paper empirically investigated how warnings detected
by two static analysis tools—CheckStyle and PMD—are re-
moved in the context of code reviews conducted on six Java
open source projects, three of which (Motech, OpenDaylight

169

Controller and Vaadin) rely on static analyzers during the
software development and three of which (Eclipse CDT, JDT
core and UI Platform) do not. The analysis has been conducted
from both (i) a quantitative point of view, by analyzing changes
occurred during code reviews using data available through
Gerrit and by running the analyzers on the first (initial) and
last (accepted) change sets, and (ii) a qualitative point of view,
by manually analyzing 10% of the code reviews (for each
project) to investigate how and whether developers took care
of warnings highlighted by static analyzers.

Results of the study indicate that the overall percentage of
warnings removed during code reviews ranges between 6% and
22%, which is slightly higher but in line with the 10% that Kim
and Ernst [14] found to be removed in the context of bug fixing
changes. This is the result of a gradual removal of warnings,
since we found that the warning density does not significantly
decrease in each code review and that in some cases such an
observed difference is marginally significant but in any case
with a negligible observed effect size. However, by analyzing
specific categories of warnings separately, we found that in
many cases the percentage of removed warnings is particularly
high, and above 50%. Examples of such warnings include the
imports, regular expression, type resolution categories. Last,
but not least, we found that projects using static analysis tools
fixed a higher percentage of warnings than other projects.This
result suggests that an appropriate configuration of static
analysis tools—with the aim of highlighting only warnings
relevant in a particular context—might help developers to focus
on relevant warnings only without being overloaded.

Work-in-progress investigates to what extent enforcing the
removal of certain warnings before submitting a patch can help
reducing developers’ burden during code reviews. Also, the
analysis of past data from code reviews could possibly be used
to support the configuration of static analysis tools towards
warnings that are considered relevant in a particular project or
organization. Finally, we plan to perform in-depth studies on
specific kinds of problems, for example on how issues related
to source code lexicon are dealt with during code reviews.

REFERENCES

[1] “CheckStyle,” http://checkstyle.sourceforge.net, accessed: 2014-10-27.
[2] “Gerrit,” https://code.google.com/p/gerrit/, accessed: 2014-10-27.
[3] “PMD,” http://pmd.sourceforge.net, accessed: 2014-10-27.
[4] A. F. Ackerman, L. S. Buchwald, and F. H. Lewski, “Software inspec-

tions: An effective verification process,” IEEE Software, vol. 6, no. 3,
pp. 31–36, May 1989.

[5] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou,
“Evaluating static analysis defect warnings on production software,” in
Proceedings of the Workshop on Program Analysis for Software Tools
and Engineering (PASTE), 2007, pp. 1–8.

[6] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of the International Conference
on Software Engineering (ICSE), 2013, pp. 712–721.

[7] R. D. Baker, “Modern permutation test software,” in Randomization
Tests, E. Edgington, Ed. Marcel Decker, 1995.

[8] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey, “The secret
life of patches: A firefox case study,” in Proceedings of the Working
Conference on Reverse Engineering (WCRE), 2012, pp. 447–455.

[9] ——, “The influence of non-technical factors on code review,” in Pro-
ceedings of the Working Conference on Reverse Engineering (WCRE),
2013, pp. 122–131.

[10] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Exploring the
influence of identifier names on code quality: An empirical study,” in
Proceedings of the European Conference on Software Maintenance and
Reengineering (CSMR), 2010, pp. 156–165.

[11] M. Di Penta, L. Cerulo, and L. Aversano, “The life and death of
statically detected vulnerabilities: An empirical study,” Information &
Software Technology, vol. 51, no. 10, pp. 1469–1484, 2009.

[12] M. E. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Systems, vol. 38, no. 2-3, pp. 258–287, June 1999.

[13] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” SIGPLAN Notices,
vol. 39, no. 12, pp. 92–106, December 2004.

[14] S. Kim and M. D. Ernst, “Which warnings should I fix first?” in
Proceedings of the joint meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE), 2007, pp. 45–54.

[15] M. V. Mantyla and C. Lassenius, “What types of defects are really dis-
covered in code reviews?” IEEE Transactions on Software Engineering
(TSE), vol. 35, no. 3, pp. 430–448, 2009.

[16] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of
code review coverage and code review participation on software quality:
a case study of the qt, vtk, and ITK projects,” in Proceedings of the
Working Conference on Mining Software Repositories (MSR), 2014, pp.
192–201.

[17] M. Mukadam, C. Bird, and P. C. Rigby, “Gerrit software code review
data from android,” in Proceedings of the Working Conference on
Mining Software Repositories (MSR), 2013, pp. 45–48.

[18] N. Nagappan and T. Ball, “Static analysis tools as early indicators
of pre-release defect density,” in Proceedings of the International
Conference on Software Engineering (ICSE), 2005, pp. 580–586.

[19] M. G. Nanda, M. Gupta, S. Sinha, S. Chandra, D. Schmidt, and P. Bal-
achandran, “Making defect-finding tools work for you,” in Proceedings
of the International Conference on Software Engineering (ASE) -
Volume 2, 2010, pp. 99–108.

[20] M. Nurolahzade, S. M. Nasehi, S. H. Khandkar, and S. Rawal, “The
role of patch review in software evolution: An analysis of the mozilla
firefox,” in Proceedings of the Joint International and Annual ERCIM
Workshops on Principles of Software Evolution (IWPSE) and Software
Evolution (Evol) Workshops, 2009, pp. 9–18.

[21] D. L. Parnas and M. Lawford, “The role of inspection in software
quality assurance,” IEEE Transactions on Software Engineering, vol. 29,
no. 8, pp. 674–676, 2003.

[22] F. Rahman, S. Khatri, E. T. Barr, and P. T. Devanbu, “Comparing
static bug finders and statistical prediction,” in Proceedings of the
International Conference on Software Engineering (ICSE), 2014, pp.
424–434.

[23] P. C. Rigby, “Understanding open source software peer review: Re-
view processes, parameters and statistical models, and underlying
behaviours and mechanisms,” Ph.D. dissertation, University of Victoria,
BC, Canada, 2011.

[24] P. C. Rigby and D. M. German, “A preliminary examination of code
review processes in open source projects,” University of Victoria, Tech.
Rep. DCS-305-IR, January 2006.

[25] P. C. Rigby, D. M. Germán, L. Cowen, and M. D. Storey, “Peer review
on open-source software projects: Parameters, statistical models, and
theory,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 23, no. 4, p. 35, 2014.

[26] P. C. Rigby, D. M. German, and M. D. Storey, “Open source software
peer review practices: a case study of the apache server,” in Proceedings
of the International Conference on Software Engineering (ICSE), 2008,
pp. 541–550.

[27] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures (fourth edition). Chapman & All, 2007.

[28] F. Thung, Lucia, D. Lo, L. Jiang, F. Rahman, and P. T. Devanbu, “To
what extent could we detect field defects? an empirical study of false
negatives in static bug finding tools,” in Proceedings of the International
Conference on Automated Software Engineering (ASE), 2012, pp. 50–
59.

[29] P. Weißgerber, D. Neu, and S. Diehl, “Small patches get in!” in Pro-
ceedings of the Working Conference on Mining Software Repositories
(MSR), 2008, pp. 67–76.

[30] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. Hudepohl, and
M. Vouk, “On the value of static analysis for fault detection in software,”
IEEE Transactions on Software Engineering (TSE), vol. 32, no. 4, pp.
240–253, 2006.

170

